
| ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e ak                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABBREVIATIONS: WHEN USED IN THESE DOCUMENTS SHALL CONFORM TO THE FOLLOWING LIST UNLESS OTHERWISE NOTED. DRAWINGS OF OTHER DISCIPLINES (SUCH AS CIVIL, STRUCTURAL, PLUMBING, MCHANICAL, AND ELECTRICAL) MAY CONTAIN SPECIFIC ABBREVIATIONS, REFERENCES, AND LEGENDS WITH INTERPRETATION INTENDED ONLY FOR THOSE DISCIPLINES.  8 AND FA FIRE ALARM O.C. ON CENTER O.C. ON CENTER O.C. ON CENTER O.C. ON CENTER OWNER/OTHERS DIMENSION OF DIMENSION O | HVAC REPLACEMENT AT VARIOUS BUILD<br>MERCED COMMUNITY COLLEGE DISTRI<br>MERCED, CA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |
| Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GENERAL  SITE OF COMMING CODES  SECRETAL  SECRETAL SECRETARY OF CODES | M813 MECHANICAL DETAILS  ELECTRICAL E101 ELECTRICAL PLANS - CDC CHILLER YARD E200 ELECTRICAL PLANS - ADMINISTRATION BUILDING E210 ELECTRICAL PLANS - COMMUNICATIONS BUILDING E220 ELECTRICAL PLANS - STUDENT UNION E230 ELECTRICAL PLANS - SERVICE BUILDING E800 ELECTRICAL SCHEDULES, LEGENDS, AND NOTES 6 TOTAL PAGES: 28 |
| CFC CALIFORNIA FIRE CODE CMC CALIFORNIA MECHANICAL CODE CPC CALIFORNIA PLUMBING CODE DSA DIVISION OF THE STATE ARCHITECT ICBO INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS NSF NATIONAL SANITATION FOUNDATION NFPA NATIONAL FIRE PROTECTION ASSOCIATION NEC NATIONAL ELECTRICAL CODE  W.C. WATER CLOSET W.CH. WHELC CHAIR WO WOD WDW. WINDOW WF WIDE FLANGE W.H. WATER HEATER W/O WITHOUT W.P. WATERPROOF W.S. WOOD SCREW WT. WEIGHT WWF WELDED WIRE FABRIC  XFMR TRANSFORMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SY O                                                                                                                                                                                                                                                                                                                        |
| E: 3/8/2022 1:55:27 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OWNER MERCED COLLEGE 3500 "W' STREET MERCED, CA. 95348 (209)384-6000 CONTACT: MARCUS METCALF  OWNERCAL PROJECT ARCHITECT TETER, LLP  MECHANICAL ENGINEER NET POSITIVE CONSULTING ENGINEERS 1446 TOLLHOUSE RD., SUITE #102 CLOVIS CA. 93811 (559) 497-7293 CONTACT: JAMES E. HICKMAN, JR.  MECHANICAL ENGINEER TETER, LLP 1446 TOLLHOUSE RD., SUITE #102 CLOVIS CA. 93811 (559) 940-7293 CONTACT: JON SCHLUNDT  CONTACT: JON SCHLUNDT  CONTACT: BRYAN GLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HVAC UPGARDE MERCED COLLE                                                                                                                                                                                                                                                                                                   |
| ABBREVIATIONS 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT DIRECTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHEET INDEX                                                                                                                                                                                                                                                                                                                 |



3600 M. SRE
MERCED, CA. 95348
DRAWING TITLE
COVER

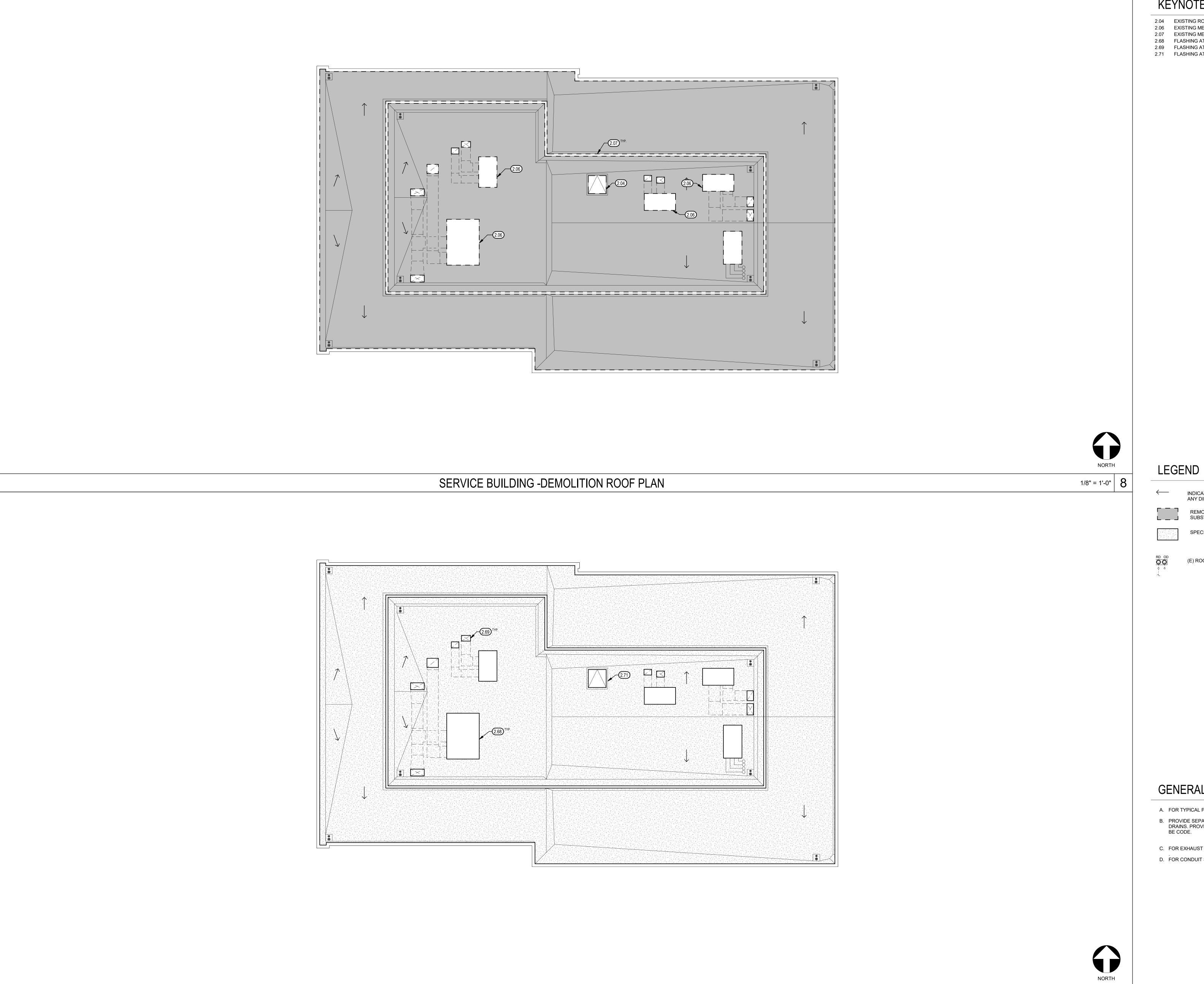
?1-12277

G000





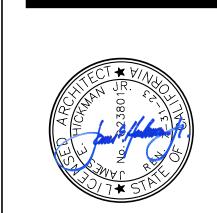



- A. THE CONTRACTOR SHALL ACCEPT THE SITE IN ITS PRESENT CONDITION & DEMOLISH AND/OR REMOVE FROM THE AREA OF THE PROJECT ALL STRUCTURES, BOTH SURFACE & SUBSURFACE, TREES, BRUSH, ROOTS, DEBRIS, ORGANIC MATTER, & ALL OTHER MATTER DETERMINED BY THE INSPECTOR TO BE DELETERIOUS. SUCH MATERIAL SHALL BE REMOVED FROM THE SITE BY THE
- B. EXCAVATIONS SHALL BE ADEQUATELY SHORED, BRACED & SHEETED SO THAT THE EARTH WILL NOT SLIDE OR SETTLE & SO THAT ALL EXISTING IMPROVEMENTS OF ANY KIND WILL BE FULLY PROTECTED FROM DAMAGE. WHERE THE EXCAVATION FOR A CONDUIT TRENCH, AND/OR STRUCTURE IS FIVE FEET OR MORE IN DEPTH, THE CONTRACTOR SHALL PROVIDE ADEQUATE SHEETING, WHICH SHALL CONFORM TO THE APPLICABLE CONSTRUCTION SAFETY ORDERS OF THE DIVISION OF INDUSTRIAL SAFETY OF THE STATE OF CALIFORNIA. THE CONTRACTOR SHALL ALWAYS COMPLY WITH OSHA
- C. EXISTING UNDERGROUND UTILITIES & IMPROVEMENTS ARE SHOWN IN THEIR APPROX. LOCATIONS BASED UPON RECORD INFO. AVAILABLE TO THE ARCHITECT AT THE TIME OF PREPARATION OF THESE PLANS. LOCATIONS MAY NOT HAVE BEEN VERIFIED IN THE FIELD & NO GUARANTEE IS MADE AS TO THE ACCURACY OR COMPLETENESS OF THE INFO. SHOWN. THE CONTRACTOR SHALL NOTIFY UTILITY COMPANIES AT LEAST 2 WORKING DAYS IN ADVANCE OF CONSTRUCTION TO FIELD LOCATE UTILITIES. CALL UNDERGROUND SERVICE
- D. PROPERTY DIMENSIONS AS SHOWN ARE BASED ON RECORD INFO. & SHOULD BE FIELD VERIFIED BY A PROPERTY SURVEY PRIOR TO CONSTRUCTION.
- E. REFER TO ELECTRICAL FOR UTILITY INFORMATION. CONTRACTOR TO COORDINATE ALL TRADES TO MAINTAIN PROPER CLEARANCES & AVOID CONFLICTS.

HVAC UPGA MERCED CC 3600 M. SRE MERCED, CA. 95348

ЩЩ

21-12277


A100



SERVICE BUILDING - PROPOSED ROOF PLAN

### KEYNOTES @

- 2.04 EXISTING ROOF ACCESS DOOR AND CURB TO REMAIN 2.06 EXISTING MEHANICAL UNIT AND DUCT TO REMAIN, SEE MECHANICAL 2.07 EXISTING MECHANIAL SCREEN PARAPET WALL TO REMAIN
- 2.68 FLASHING AT EXISTING MECHANICAL CURB, SEE 7/A801 2.69 FLASHING AT EXSITING CURB AND DUCT WORK, SEE 8/A801
- 2.71 FLASHING AT EXISTING CURB, SEE 8/A801



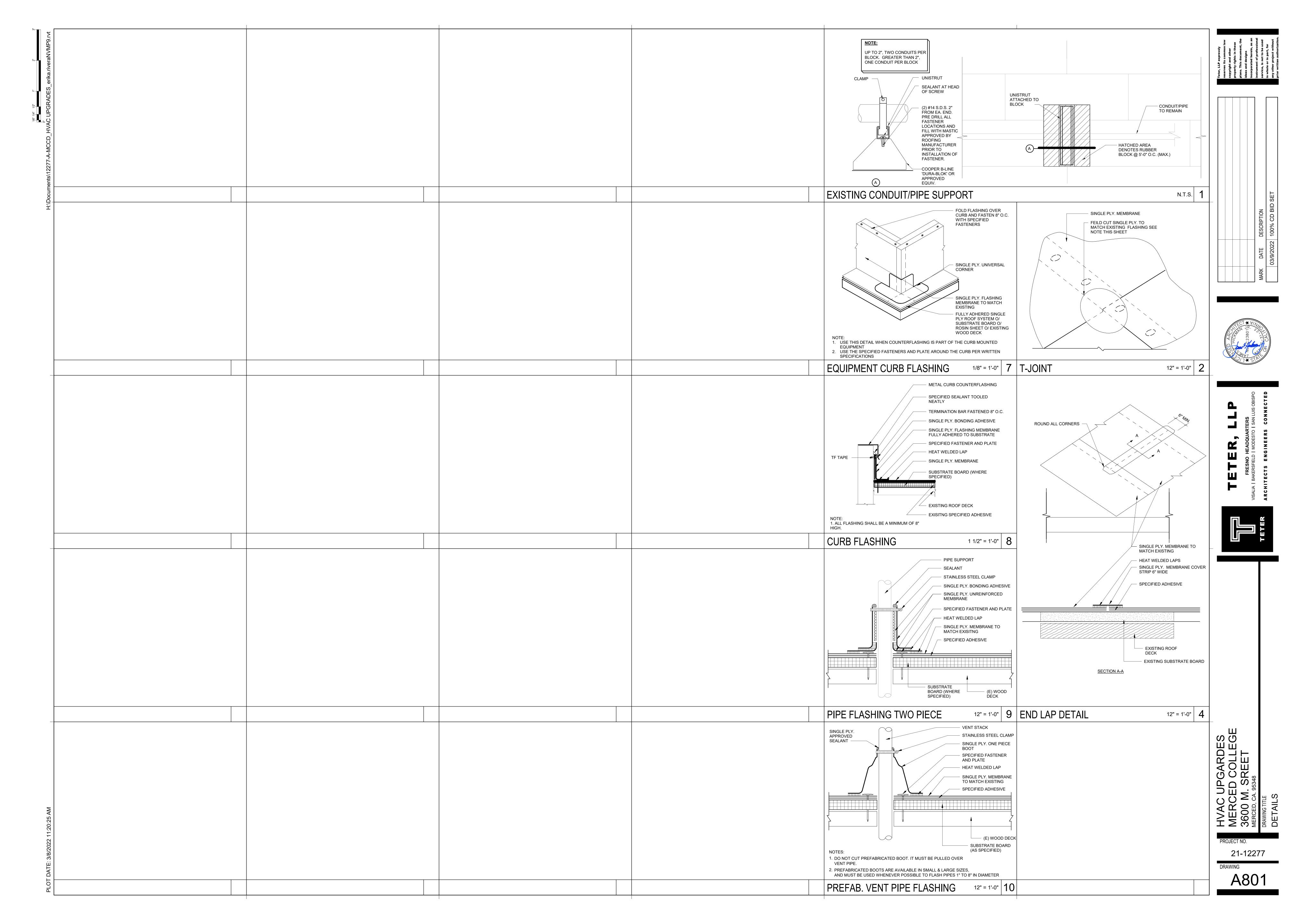
## **GENERAL NOTES**

A. FOR TYPICAL PIPE THROUGH ROOF PENETRATIONS, SEE 9 / A801 & 10 / A801

INDICATES DOWNWARD DIRECTION OF ROOF SLOPE MIN. SLOPE IN ANY DIRECTION SHALL NOT BE LESS THAN 1/4" :12"

REMOVE EXISTING ROOFING SYSTEM DOWN TO EXISTING SUBSTRATE TYP.

SPECIFIED ROOFING SYTEM


(E) ROOF DRAIN / OVER FLOW DRAIN

- B. PROVIDE SEPARATE DRAIN LINES FOR ROOF DRAINS AND OVERFLOW DRAINS. PROVIDE ALL HANGERS + SUPPORTS FOR PIPE AS REQUIRED BE CODE.
- C. FOR EXHAUST FAN OPENIGN THROUGH ROOF, SEE 8 / A801
- D. FOR CONDUIT SUPPORT SEE 1 / A801

1/8" = 1'-0" 10

21-12277

A500



### MEP COMPONENT ANCHORAGE NOTE

ALL MECHANICAL, PLUMBING AND ELECTRICAL COMPONENTS SHALL BE ANCHORED AND INSTALLED PER THE DETAILS ON THE DSA APPROVED CONSTRUCTION DOCUMENTS. THE FOLLOWING COMPONENTS SHALL BE ANCHORED OR BRACED TO MEET THE FORCE AND DISPLACEMENT REQUIREMENTS PRESCRIBED IN THE 2019 CBC SECTIONS 1617A.1.18 THROUGH 1617A.1.26 AND ASCE 7-16 CHAPTERS 13, 26, AND 30:

- ALL PERMANENT EQUIPMENT AND COMPONENTS. TEMPORARY, MOVABLE OR MOBILE EQUIPMENT THAT IS PERMANENTLY ATTACHED (E.G. HARD WIRED) TO THE BUILDING UTILITY SERVICES SUCH AS ELECTRICITY, GAS OR WATER. "PERMANENTLY ATTACHED" SHALL INCLUDE ALL ELECTRICAL CONNECTIONS EXCEPT PLUGS FOR 110/220 VOLT RECEPTACLES
- HAVING A FLEXIBLE CABLE. TEMPORARY, MOVABLE OR MOBILE EQUIPMENT WHICH IS HEAVIER THAN 400 POUNDS OR HAS A CENTER OF MASS LOCATED 4 FEET OR MORE ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT IS REQUIRED TO BE RESTRAINED IN A MANNER APPROVED BY DSA.

THE FOLLOWING MECHANICAL AND ELECTRICAL COMPONENTS SHALL BE POSITIVELY ATTACHED TO THE STRUCTURE BUT NEED NOT DEMONSTRATE DESIGN COMPLIANCE WITH THE REFERENCES NOTED ABOVE. THESE COMPONENTS SHALL HAVE FLEXIBLE CONNECTIONS PROVIDED BETWEEN THE COMPONENT AND ASSOCIATED DUCTWORK, PIPING, AND CONDUIT. FLEXIBLE CONNECTIONS MUST ALLOW MOVEMENT IN BOTH TRANSVERSE AND LONGITUDINAL DIRECTIONS:

- A. COMPONENTS WEIGHING LESS THAN 400 POUNDS AND HAVE A CENTER OF MASS LOCATED 4 FEET OR LESS ABOVE THE ADJACENT FLOOR OR
- ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT. COMPONENTS WEIGHING LESS THAN 20 POUNDS, OR IN THE CASE OF DISTRIBUTED SYSTEMS, LESS THAN 5 POUNDS PER FOOT, WHICH ARE SUSPENDED FROM A ROOF OR FLOOR OR HUNG FROM A WALL.

THE ANCHORAGE OF ALL MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS SHALL BE SUBJECT TO THE APPROVAL OF THE DESIGN PROFESSIONAL IN GENERAL RESPONSIBLE CHARGE OR STRUCTURAL ENGINEER DELEGATED RESPONSIBILITY AND ACCEPTANCE BY DSA. THE PROJECT INSPECTOR WILL VERIFY THAT ALL COMPONENTS AND EQUIPMENT HAVE BEEN ANCHORED IN ACCORDANCE WITH ABOVE REQUIREMENTS.

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEM BRACING NOTE

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEMS SHALL BE BRACED TO COMPLY WITH THE FORCES AND DISPLACEMENTS PRESCRIBED IN ASCE 7-16 SECTION 13.3 AS DEFINED IN ASCE 7-16 SECTIONS 13.6.5, 13.6.6, 13.6.7, 13.6.8; AND 2019 CBC, SECTIONS 1617A.1.24, 1617A.1.25 AND 1617A.1.26.

THE METHOD OF SHOWING BRACING AND ATTACHMENTS TO THE STRUCTURE FOR THE IDENTIFIED DISTRIBUTION SYSTEM ARE AS NOTED BELOW. WHEN BRACING AND ATTACHMENTS ARE BASED ON A PRE-APPROVED INSTALLATION GUIDE (E.G., OSHPD OPM FOR 2013 CBC OR LATER), COPIES OF THE BRACING SYSTEM INSTALLATION GUIDE OR MANUAL SHALL BE AVAILABLE ON THE JOBSITE PRIOR TO THE START OF AND DURING THE HANGING AND BRACING OF THE DISTRIBUTION SYSTEMS. THE STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE TO SUPPORT THE HANGER AND BRACE LOADS.

MECHANICAL PIPING (MP), MECHANICAL DUCTS (MD), PLUMBING PIPING (PP), ELECTRICAL DISTRIBUTION SYSTEMS (E):

- OPTION 1: DETAILED ON THE APPROVED DRAWINGS WITH PROJECT SPECIFIC NOTES AND DETAILS. MP MD PP E - OPTION 2: SHALL COMPLY WITH THE APPLICABLE OSHPD PRE-APPROVAL APPLICABLE OSHPD PRE-APPROVAL

(OPM #) #0043-13.

### GENERAL NOTES

- 1. COORDINATION OF WORK: LAYOUT OF MATERIALS, EQUIPMENT AND SYSTEMS IS GENERALLY DIAGRAMMATIC UNLESS SPECIFICALLY DIMENSIONED. SOME WORK MAY BE SHOWN OFFSET FOR CLARITY.
- 2. THE ACTUAL LOCATION OF ALL MATERIALS, PIPING, DUCTWORK, FIXTURES, EQUIPMENT, SUPPORTS, ETC. SHALL BE CAREFULLY PLANNED, PRIOR TO INSTALLATION OF ANY WORK TO AVOID ALL INTERFERENCES WITH EACH OTHER, OR WITH STRUCTURAL, ELECTRICAL, ARCHITECTURAL OR OTHER ELEMENTS.
- 3. VERIFY THE PROPER VOLTAGE AND PHASE OF ALL EQUIPMENT WITH THE ELECTRICAL PLANS. ALL CONFLICTS SHALL BE CALLED TO THE ATTENTION OF THE ARCHITECT AND THE ENGINEER PRIOR TO THE INSTALLATION OF ANY WORK OR THE ORDERING OF ANY EQUIPMENT.
- 4. PROVIDE ALL DUCT TRANSITION PIECES AND FITTINGS REQUIRED TO ACCOMMODATE MECHANICAL EQUIPMENT CONNECTIONS, STRUCTURE, ARCHITECTURAL ELEMENTS, AND CHANGES IN DUCT SIZES.
- 5. ALL DUCTWORK SHALL BE CONSTRUCTED, ERECTED AND TESTED IN ACCORDANCE WITH THE STANDARDS ADOPTED BY SMACNA AND CHAPTER 6 OF THE 2019 CMC.
- 6. ALL DUCTWORK AND PIPING SHALL BE INSULATED CONSISTENT WITH THE REQUIREMENTS OF 2019 CMC. INSULATION MATERIALS SHALL MEET THE CALIFORNIA QUALITY STANDARD PER SECTION 110.8, 120.3, AND 120.4 OF THE 2019 CALIFORNIA ENERGY CODE.
- 7. ALL DUCT SIZES SHOWN ARE NET INSIDE DIMENSIONS.
- 8. DUCTWORK SHALL BE SHEET METAL CONSTRUCTED IN COMPLETE CONFORMANCE WITH CMC LATEST EDITION, CHAPTER 6 AND THE LATEST SMACNA HVAC DUCT CONSTRUCTION STANDARDS.
- 9. ALL DRAWINGS AND SPECIFICATIONS ARE TO BE CONSIDERED PART OF THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REVIEW AND COORDINATION OF ALL DRAWINGS PRIOR TO ANY CONSTRUCTION, INCLUDING ARCHITECTURAL, STRUCTURAL, MECHANICAL, PLUMBING, AND ELECTRICAL. ANY WORK PERFORMED IN CONFLICT WITH THE CONTRACT DOCUMENTS OR ANY CODE REQUIREMENT SHALL BE CORRECTED BY THE CONTRACTOR AT HIS OWN EXPENSE AND AT NO EXPENSE TO THE OWNER OR THE OWNER REPRESENTATIVE.
- 10. PROVIDE VOLUME DAMPERS IN ALL BRANCH DUCTS (SUPPLY, RETURN, OSA AND EXHAUST) FOR SYSTEM BALANCING.
- 11. HANDLE, STORE AND INSTALL ALL EQUIPMENT PER MANUFACTURER'S INSTRUCTIONS AND AS DIRECTED IN THE PROJECT MANUAL.
- 12. ALL AIR SYSTEMS SHALL BE TESTED, ADJUSTED AND BALANCED TO MEET THE REQUIRED FLOW. TAB METHODOLOGY SHALL BE SUBMITTED TO OWNER REPRESENTATIVE PRIOR TO IMPLEMENTATION AND IN ACCORDANCE WITH PROJECT SEQUENCING.

ACCESSORIES

### SHEET INDEX

M001 MECHANICAL SCHEDULES, LEGEND AND GENERAL NOTES

M002 MECHANICAL EQUIPMENT SCHEDULES M100 MECHANICAL SITE PLAN - MERCED COLLEGE

M101 MECHANICAL PLANS - MERCED COLLEGE - CDC CHILLER YARD

M102 MECHANICAL SITE PLAN - LOS BANOS CAMPUS

M510 MECHANICAL PLANS - MERCED COLLEGE - ADMINISTRATION BUILDING M511 MECHANICAL PLANS - MERCED COLLEGE - ADMINISTRATION BUILDING PENTHOUSE

M520 MECHANICAL PLANS - MERCED COLLEGE - COMMUNICATIONS BUILDING M530 MECHANICAL DEMOLITION ROOF PLAN - MERCED COLLEGE - STUDENT UNION

M531 MECHANICAL ROOF PLAN - MERCED COLLEGE - STUDENT UNION

M540 MECHANICAL PLANS - MERCED COLLEGE - SERVICE BUILDING

M550 MECHANICAL ROOF PLAN - LOS BANOS CAMPUS - BUILDING A

M551 MECHANICAL ROOF PLAN - LOS BANOS CAMPUS - BUILDING B

M800 MECHANICAL DETAILS M810 MECHANICAL DETAILS

M811 MECHANICAL DETAILS

M812 MECHANICAL DETAILS M813 MECHANICAL DETAILS

## MECHANICAL SCHEDULES

| PUMP SCHEDULE   |                          |                          |                           |                           |
|-----------------|--------------------------|--------------------------|---------------------------|---------------------------|
| DESIGNATION     | P-1                      | P-2                      | P-3                       | P-4                       |
|                 |                          |                          |                           |                           |
| HORSEPOWER      | 3                        | 3                        | 1                         | 1                         |
| VOLTS/PHASE     | 460 / 3                  | 460 / 3                  | 460 / 3                   | 460 / 3                   |
| RPM             | 1745                     | 1745                     | 1750                      | 1750                      |
| GPM/TDH (FT.)   | 150 / 50                 | 150 / 50                 | FIELD VERIFY              | FIELD VERIFY              |
| EFFICIENCY (%)  | 73                       | 73                       | 73                        | 73                        |
| MANUFACTURER    | TACO                     | TACO                     | TACO                      | TACO                      |
| TYPE            | END SUCTION CENTRIFUGAL  | END SUCTION CENTRIFUGAL  | CLOSE-COUPLED END SUCTION | CLOSE-COUPLED END SUCTION |
| MODEL NUMBER    | FI2009D                  | FI2009D                  | CI1507D                   | CI1506D                   |
| LOCATION        | CHILD DEVELOPMENT CENTER | CHILD DEVELOPMENT CENTER | LOS BANOS - A             | LOS BANOS - B             |
| OPER. WT. (LBS) | 328                      | 328                      | 121                       | 121                       |
| ACCESSORIES     | 1                        | 1                        | 2                         | 2                         |

| 1. | PROVIDE VFD AND PREMIUM EFFICIENCY MOTOR. |
|----|-------------------------------------------|
| 2. | ECM VARIABLE SPEED MOTOR.                 |
|    |                                           |

| DESIG       | NATION              | CH-1                     |
|-------------|---------------------|--------------------------|
| CADA        | OITV (TONO)         | 70                       |
|             | CITY (TONS)         | 70                       |
|             | S/PHASE             | 460 / 3                  |
| MCA /       | MOCP                | 145 / 175                |
| EER         |                     | 10.05                    |
| IPLV /      | NPLV                | 15.26 / 14.77            |
|             | QUANTITY            | 4                        |
| Ξ.          | RLA - EACH          | 25, 33, 33, 25           |
| ОТС         | OPER. KW (TOTAL)    | 88.5                     |
| COMP. MOTOR |                     |                          |
| 8           |                     |                          |
|             |                     |                          |
| •4          | GPM                 | 150                      |
| TOR         | PRESSURE DROP (FT.) | 8.43                     |
| JRA         | EWT / LWT (0F)      | 54 / 44                  |
| APC         | SCALE FACTOR        | 0.00010                  |
| EVAPORATOR  |                     |                          |
| AMBIE       | NT AIR (0F)         | 105                      |
| MANU        | FACTURER            | TRANE                    |
| TYPE        |                     | AIR COOLED               |
| MODE        | NUMBER              | CGAM070F2                |
| LOCAT       | TION                | CHILD DEVELOPMENT CENTER |
| OPER.       | WT (LBS)            | 5,300                    |
| ACCES       | SSORIES             | -                        |

| IND                                                                                                                              | OOR UNIT SCH      | EDULE                    |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| DESIGN                                                                                                                           | NATION            | CRAC-1                   |
|                                                                                                                                  |                   |                          |
|                                                                                                                                  | SUPPLY AIR (CFM)  | 4800                     |
| _                                                                                                                                | EXT. S P (IN. WC) | 0.50                     |
| BLOWER                                                                                                                           | MIN. O.S.A. (CFM) | 0                        |
|                                                                                                                                  | VOLTS/PHASE       | 460 / 3                  |
| "                                                                                                                                | MCA / MOCP        | 27 / 40                  |
|                                                                                                                                  | DRIVE             | DIRECT                   |
| (0)                                                                                                                              | SENSIBLE (MBH)    | 26.9                     |
| COOLING                                                                                                                          | TOTAL (MBH)       | 32.6                     |
|                                                                                                                                  | EADB/EAWB (oF)    | 80 / 62.9                |
|                                                                                                                                  |                   |                          |
|                                                                                                                                  | QUANTITY/SIZE     | 2 / 31.5x21.28           |
| ERS                                                                                                                              | TYPE              | 30% PLEATED              |
|                                                                                                                                  | P D (IN WC)       |                          |
|                                                                                                                                  |                   |                          |
| MCA / MOCP DRIVE  SENSIBLE (MBH)  TOTAL (MBH)  EADB/EAWB (oF)  QUANTITY/SIZE  TYPE P D (IN WC)  MANUFACTURER  TYPE  MODEL NUMBER | STULTZ            |                          |
| TYPE                                                                                                                             |                   | VERTICAL AIR COOLED DX   |
| MODEL                                                                                                                            | NUMBER            | COS-120                  |
| LOCATI                                                                                                                           | ON                | SERVICE BLDG SERVER ROOM |
| OPER. V                                                                                                                          | WT (LBS)          | 810                      |

1. WIRED WALL MOUNTED THERMOSTAT 2. REFRIGERANT LINE SET COVERS FOR EXPOSED PIPING IN ROOM (AC COVER GUARD)

1,2

| DESIG          | NATION                  | ODU-1           | ODU-2             |  |
|----------------|-------------------------|-----------------|-------------------|--|
|                |                         |                 |                   |  |
|                | VOLTS / PHASE           | 460 / 3         | 460 / 3           |  |
| ICAL           | MCA / MOCP              | 66.3 / 90       | 9.3 / 15          |  |
| ELECTRICAL     |                         |                 |                   |  |
|                | NOM. COOLING CAP. (MBH) | 343.4           | 204.0             |  |
| ACE.           | EER / IEER              | 10.8 / -        |                   |  |
| MAI            | AMBIENT AIR (oF)        | 95              | 105               |  |
| PERFORMANCE    |                         |                 |                   |  |
| MANUF          | ACTURER                 | CARRIER         | STULTZ            |  |
| ТҮРЕ           |                         | SINGLE CIRCUIT  | SINGLE CIRCUIT    |  |
| MODEL          | NUMBER                  | 38APS           | SCS-252-SEC       |  |
| LOCAT          | ION                     | ADMIN BLDG ROOF | SERVICE BLDG ROOF |  |
| OPER. WT (LBS) |                         | 1,282           | 495               |  |

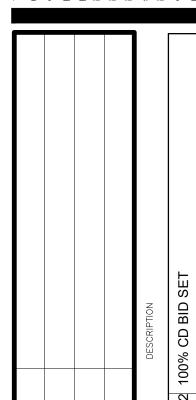
### MECHANICAL LEGEND

REFRIGERANT DISCHARGE

REFRIGERANT SUCTION

RL REFRIGERANT LIQUID

—SCW—— SOFT COLD WATER


| SYMBOL            | ITEM                                   | ABBR.        | SYMBOL       | ITEM                                                   | ABB             |
|-------------------|----------------------------------------|--------------|--------------|--------------------------------------------------------|-----------------|
|                   | ABOVE                                  | ABV          | s            | STEAM SUPPLY                                           | S               |
|                   | ABOVE CEILING                          | ABV CLG      | ——CR——       | STEAM CONDENSATE RETURN                                | CR              |
|                   | ABOVE FINISHED FLOOR                   | AFF          | ——SBD——      | SURFACE BLOWDOWN                                       |                 |
|                   | ALTERNATE                              | ALT          | ——D—         | DRAIN                                                  | D               |
|                   | AIR CONDITIONING                       | AC           |              | PIPING CAP                                             |                 |
|                   | AIR FLOW STATION                       | AFS          |              | EXISTING (DESIGNATED)                                  | (E)             |
|                   | AIR HANDLER UNIT  ANALOG INPUT         | AHU          | <i>/////</i> | REMOVE / DEMO EXISTING (DESIGNATED)  DIRECTION OF FLOW |                 |
|                   | ANALOG INFUT                           | AO           | <u> </u>     | SUPPLY AIR                                             | SA              |
| &                 | AND                                    | AO           |              | RETURN AIR                                             | RA              |
|                   | ARCHITECT / ARCHITECTURAL              | ARCH         |              | EXHAUST AIR                                            | EA              |
| @                 | AT                                     |              |              | PIPE/DUCT TURN DOWN                                    |                 |
|                   | BACKDRAFT DAMPER                       | BDD          | ~            | PIPE/DUCT TURN UP                                      |                 |
|                   | BELOW FINISH CEILING                   | BFC          | 2            | ROUND DUCT (SMALLER THAN 10"Ø)                         |                 |
|                   | BELOW FLOOR                            | BEL FLR      | }~~~~~       | ROUND FLEXIBLE DUCT                                    |                 |
|                   | BELOW GRADE                            | BEL GR       |              | RECTANGULAR OR ROUND DUCT (10"Ø AND LARGER)            |                 |
|                   | BLIND FLANGE                           | BLF          |              | EXISTING DUCT                                          |                 |
|                   | BRITISH THERMAL UNIT                   | BTU          | <u> </u>     | (DESIGNATED)                                           |                 |
|                   | BRITISH THERMAL UNIT PER HOUR          | BTUH         |              | REMOVE/ DEMO EXISTING DUCT (DESIGNATED)                |                 |
|                   | CALIFORNIA MECHANICAL CODE             | CMC          | <u> </u>     | DUCT WITH ACOUSTIC LINING                              |                 |
|                   | CALIFORNIA PLUMBING CODE  CEILING      | CLG          |              | SUPPLY AIR DUCT DROP                                   | +               |
| r                 | CEILING  CENTER LINE                   | - CLG        |              | SUPPLY AIR DUCT RISE                                   | +               |
| <u>G</u>          | CONTINUATION                           | CONT         |              | RETURN AIR DUCT DROP                                   | +               |
|                   | CUBIC FEET OF AIR PER MINUTE           | CFM          |              | RETURN AIR DUCT RISE                                   | 1               |
|                   | CURRENT SENSOR                         | CS           |              | EXHAUST AIR DUCT DROP                                  |                 |
| Ø                 | DIAMETER                               | DIA          |              | EXHAUST AIR DUCT RISE                                  |                 |
|                   | DIFFERENTIAL PRESSURE SWITCH           | DPS          | <br> -<1     | OUTSIDE AIR DUCT DROP                                  |                 |
|                   | DIGITAL INPUT                          | DI           |              | OUTSIDE AIR DUCT RISE                                  |                 |
|                   | DIGITAL OUTPUT                         | DO           |              | TURNING VANES                                          | TV              |
|                   | DOWN                                   | DN           |              | EXTRACTOR                                              |                 |
|                   | DRAWING                                | DWG          | <u>©</u>     | CO <sub>2</sub> SENSOR                                 |                 |
|                   | ELECTRICAL                             | ELEC         | (DD)         | DUCT DETECTOR                                          | DD              |
|                   | ELBOW                                  | ELL          | HD           | HEAT DETECTOR                                          | HD              |
|                   | EXHAUST                                | EXH          | (SD)         | SMOKE DETECTOR                                         | SD              |
|                   | EXHAUST AIR                            | EA           | M            | MOTORIZED DAMPER                                       |                 |
|                   | EXHAUST FAN                            | EF           | •            | FIRE DAMPER W/MOTORIZED RESET AND ACCESS DOOR          |                 |
|                   | EXISTING                               | (E)          |              | FIRE DAMPER WITH ACCESS PANEL                          |                 |
|                   | FLOOR                                  | FLR          | 1111         | OR SECURITY BARS                                       |                 |
|                   | FLOW LINE                              | FL           | -OR- ▲       | FIRE DAMPER WITH ACCESS PANEL                          | FD              |
|                   | FLOW SWITCH                            | FS           | -OR- ■       | FIRE/SMOKE DAMPER WITH ACCESS PANEL                    | F/SI            |
|                   | GAUGE                                  | GA           |              | VOLUME CONTROL DAMPER WITH LOCKING                     | VCI             |
|                   | GALLON                                 | GAL          | ^            | QUADRANT                                               |                 |
|                   | GALLONS PER HOUR                       | GPH          |              | REMOTE T'STAT WITH SENSOR IN DUCT                      |                 |
|                   | GALLONS PER MINUTE                     | GPM          | T            | THERMOSTAT; THERMOSTAT LABEL                           | T'ST/           |
|                   | INSIDE DIAMETER                        | ID           | <u>AC-1</u>  | EXAMPLE : THERMOSTAT FOR AC-1                          |                 |
|                   | MAKE-UP AIR UNIT                       | MAU          | <del>×</del> | POINT OF CONNECTION TO EXISTING                        | PO              |
|                   | MAXIMUM                                | MAX          |              | BYPASS TIMER                                           | BP <sup>-</sup> |
|                   | MINIMUM                                | MIN          |              | THERMOMETER                                            | БР              |
|                   | NEW                                    | (N)          | <i>(</i>     | PRESSURE GAGE                                          | +               |
|                   | NOT IN CONTRACT                        | NIC          |              | SECURITY BARS                                          | +               |
|                   | NOT TO SCALE                           | NTS          | Y            | PETE'S PLUG                                            | +               |
| #                 | NUMBER                                 | NO.          |              | BALANCING COCK                                         | 1               |
|                   | OUTSIDE DIAMETER                       | OSA          |              | BALL VALVE                                             |                 |
|                   | OUTSIDE DIAMETER POUNDS                | OD<br>LBS    |              | BUTTERFLY VALVE                                        |                 |
|                   | POUNDS PER SQUARE INCH                 | PSI          |              | CHECK VALVE                                            |                 |
|                   | POUNDS PER SQUARE INCH ABSOLUTE        | PSIA         |              | CONCENTRIC REDUCER                                     |                 |
|                   | POUNDS PER SQUARE INCH GAUGE           | PSIG         |              | TWO-WAY CONTROL VALVE                                  |                 |
|                   | POLYVINYL CHLORIDE                     | PVC          |              | FLOW SWITCH                                            | FS              |
|                   | PRESSURE STATION                       | PS           |              | FLEXIBLE CONNECTION                                    | FLE             |
|                   | RETURN AIR                             | RA           |              | GATE VALVE                                             |                 |
|                   | ROOM                                   | RM           |              | GLOBE VALVE                                            |                 |
|                   | SUPPLY AIR                             | SA           |              | INSTRUMENT WELL                                        | _               |
|                   | SPECIFICATION                          | SPEC         |              | PLUG VALVE                                             |                 |
|                   | SQUARE FEET                            | SQ FT        |              | PRESSURE RELIEF VALVE  "Y" TYPE STRAINER               | PR              |
|                   | STAINLESS STEEL                        | SS           |              | UNION                                                  | -               |
|                   | TEMPERATURE                            | TEMP         | (1)          | KEYNOTE                                                | -               |
|                   | TEMPERATURE SENSOR                     | TS           |              |                                                        |                 |
|                   | THROUGH                                | THRU         | A            | GRILLE TAG                                             |                 |
|                   | TYPICAL                                | (TYP)        | EF<br>8      | NEW EQUIPMENT TAG                                      |                 |
|                   | UNDER GROUND  VARIABLE AIR VOLUME UNIT | U/G<br>VAV   | 8            | EXAMPLE: DESCRIPTION EF, MARK NUMBER 8                 |                 |
|                   |                                        |              |              | DETAIL DESERVACE                                       |                 |
|                   | WITHOUT                                | W/O          | M202         | DETAIL REFERENCE<br>EXAMPLE: DETAIL 2, SHEET M202      |                 |
|                   | WITHOUT BOILER BLOWDOWN                | W/O          |              |                                                        | _               |
| —вр <i>—</i><br>— | BOILER BLOWDOWN  BOILER FEED           |              | 3            | SECTION REFERENCE                                      |                 |
| <br>СF            | CHEMICAL FEED                          |              | M400         | EXAMPLE: SECTION 3, SHEET M400                         |                 |
| —A——              | COMPRESSED AIR                         | A            |              | ı                                                      |                 |
| -CHWS             | CHILLED WATER SUPPLY                   | CHWS         |              |                                                        |                 |
| CHWR—             | CHILLED WATER RETURN                   | CHWR         |              |                                                        |                 |
| HHWS              | HEATING HOT WATER SUPPLY               | HHWS         |              |                                                        |                 |
|                   | LIEUTING HOT WATER RETURN              | HHWR         |              |                                                        |                 |
| HHWR              | HEATING HOT WATER RETURN               | I IIIIVVIX J |              |                                                        |                 |

RD

RS

NET POSITIVE consulting e n g i n e e r s

www.NPCeng.com
project no. 1087







21-12277
DRAWING

### MECHANICAL SCHEDULES

| AIR             | HANDLER SCHED        | ULE - ADMINISTRATION           |
|-----------------|----------------------|--------------------------------|
| DESIG           | NATION               | AHU-A1                         |
|                 |                      |                                |
| OIL             | AIR FLOW (CFM)       | 14,025                         |
|                 | CAPACITY TOT. (MBH)  | 360.0                          |
| DX COOLING COIL | CAPACITY SENS. (MBH) | 343.4                          |
| L N             | EADB / EAWB (°F)     | 80 / 67                        |
| Ö               | AMBIENT AIR (°F)     | 105                            |
| X               | REFRIGERANT          | R-410A                         |
|                 |                      |                                |
|                 | INPUT CAP. (MBH)     | 500.0                          |
| HEATING         | OUTPUT CAP. (MBH)    | 400.0                          |
|                 | FUEL                 | NATURAL GAS                    |
| 뿦               | AFUE (%)             | 80%                            |
|                 | QUANTITY / SIZE      | 4 / 19.5x19.5<br>4 / 19.5x24.5 |
| RS              | EFFICIENCY (MERV)    | MERV 13                        |
| FILTERS         | FINAL PD MX (IN. WC) | 0.25                           |
| ш               |                      |                                |
| MANUF           | <br>ACTURER          | ENERGY LABS                    |
| TYPE            |                      | MULTI-ZONE VAV                 |
| MODEL           | NUMBER               | - CUSTOM -                     |
| LOCAT           | ON                   | PENTHOUSE                      |
| SERVIC          | E                    | ADMINISTRATION                 |
| NO. OF          | ZONES                | 7                              |

<sup>1.</sup> SUPPLY DUCT SMOKE DETECTOR (SYSTEM SENSOR D4120). PROVIDE CONDUIT AND CONDUCTORS AS REQUIRED FOR UNIT SHUTDOWN UPON DETECTION OF SMOKE. FURNISH REMOTE TEST SWITCH (RTS451KEY) TO ELECTRICAL FOR

1,250

1, 2, 3

OPER. WT (LBS)

ACCESSORIES

| SIGNAT               | TION                 | AHU-C1               | AHU-C2A              | AHU-C2B              | AHU-C3               | AHU-C4               |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 0.0.0.               |                      | 7.110 01             | 7110 0271            | 7.110 025            | Alle Go              | 74110 04             |
| Al                   | IR FLOW (CFM)        | 2,115                | 2,920                | 2,480                | 5,500                | 3,940                |
| MI                   | IN. O.S.A. (CFM)     | 260                  | 150                  | 150                  | 250                  | 220                  |
| E                    | XT. SP (IN. WC)      | 1.5                  | 1.5                  | 1.5                  | 1.5                  | 1.5                  |
| TO                   | OTAL SP (IN. WC)     | 3.00                 | 3.00                 | 3.00                 | 3.00                 | 3.00                 |
| _                    | P / BRAKE HP         | 3 / 1.5              | 3 / 2.27             | 3 / 1.81             | 7.5 / 3.82           | 5 / 2.58             |
| OI                   | UANTITY / SIZE       | 1 / 135              | 1 / 135              | 1 / 135              | 1 / 182              | 1 / 182              |
| -                    | FD (Y/N)             | Y                    | Υ Υ                  | Υ Υ                  | Υ Υ                  | Υ                    |
|                      | ()                   | <u>'</u>             | '                    | '                    | '                    | <u>'</u>             |
| C                    | APACITY TOT. (MBH)   | 88.2                 | 90.1                 | 81.6                 | 173.8                | 127.5                |
|                      | APACITY SENS. (MBH)  | 72.9                 | 81.7                 | 71.7                 | 150.2                | 109.7                |
| <u> </u>             | AX. F.V. (FT/MIN)    | 397.0                | 487.0                | 413.0                | 458.0                | 438.0                |
| -                    | OWS / FPI            | 6 / 10               | 6/8                  | 6/8                  | 6 / 8                | 6 / 8                |
|                      | IR PD (IN. WC)       | 0.61                 | 0.62                 | 0.49                 | 0.60                 | 0.56                 |
|                      | ADB (°F)             |                      |                      |                      |                      |                      |
| -                    | ADB (°F)             | 85.3                 | 81.1                 | 81.4                 | 80.1                 | 80.4                 |
| -                    |                      | 53.4                 | 55.2                 | 54.6                 | 54.8                 | 54.6                 |
| <u>=</u> ,           | WT / LWT (°F)        | 46 / 56              | 46 / 56              | 46 / 56              | 46 / 56              | 46 / 56              |
|                      | LUID PD (ET. WC)     | 17.7                 | 17                   | 16                   | 34.4                 | 25.2                 |
| <u> </u>             | LUID PD (FT. WC)     | 8.86                 | 9.16                 | 5.51                 | 8.74                 | 8.49                 |
| -                    | RANCH SIZE (IN.)     | 1-1/2                | 1-1/2                | 1-1/2                | 2.00                 | 2                    |
| -                    | ONTROL VALVE CV      | 10.22                | 9.81                 | 9.24                 | 19.86                | 14.55                |
| C                    | ONTROL VALVE         | 2-WAY                | 3-WAY                | 2-WAY                | 2-WAY                | 2-WAY                |
| $\perp$              |                      |                      |                      |                      |                      |                      |
| _                    | APACITY (MBH)        | 89.1                 | 105.7                | 108.8                | 193.8                | 145.7                |
| M                    | AX. F.V. (FT/MIN)    | 397.0                | 487.0                | 413.0                | 458.0                | 438.0                |
| -                    | OWS / FPI            | 2 / 10               | 2/9                  | 2 / 10               | 2 / 10               | 2 / 10               |
| Al                   | IR PD (IN. WC)       | 0.17                 | 0.22                 | 0.18                 | 0.21                 | 0.20                 |
| E                    | ADB (°F)             | 65                   | 65                   | 65                   | 65                   | 65                   |
| LA                   | ADB (°F)             | 104.0                | 98.5                 | 105.0                | 97.6                 | 99.2                 |
| E/<br>L/<br>E\<br>FL | WT / LWT (°F)        | 170 / 140            | 170 / 140            | 170 / 140            | 170 / 140            | 170 / 140            |
| FL                   | LOW RATE (GPM)       | 3.2                  | 3.5                  | 4.2                  | 5.5                  | 4.2                  |
| FL                   | LUID PD (FT. WC)     | 3.08                 | 4.00                 | 5.51                 | 5.46                 | 7.52                 |
| В                    | RANCH SIZE (IN.)     | 3/4                  | 3/4                  | 3/4                  | 1.00                 | 3/4                  |
| C                    | ONTROL VALVE CV      | 1.8                  | 2.0                  | 2.4                  | 3.2                  | 2.4                  |
| C                    | ONTROL VALVE         | 3-WAY                | 3-WAY                | 2-WAY                | 2-WAY                | 2-WAY                |
|                      |                      |                      |                      |                      |                      |                      |
| QI                   | UANTITY / SIZE       | 1 / 24x24            | 1 / 24x24            | 1 / 24x24            | 2 / 24x24            | 2 / 24x24            |
|                      | FFICIENCY (MERV)     | 1 / 12X24<br>MERV 13 | 1 / 12X24<br>MERV 13 | 1 / 12X24<br>MERV 13 | 2 / 12X24<br>MERV 13 | 2 / 12X24<br>MERV 13 |
|                      | NAL PD MAX (IN. WC)  |                      |                      |                      |                      | 0.11                 |
| -"                   | INAL PD WAX (IN. WC) | 0.11                 | 0.11                 | 0.11                 | 0.11                 | 0.11                 |
| -                    |                      |                      |                      |                      |                      |                      |
| 14                   | OLTS / PHASE         | 460 / 3              | 460 / 3              | 460 / 3              | 460 / 3              | 460 / 3              |
|                      | CCR (kA)             | 460 / 3              | 460 / 3<br>25        | 460 / 3<br>25        | 460 / 3<br>25        | 460 / 3              |
|                      |                      | 4.8                  | 4.8                  | 4.8                  | 12.0                 | 7.6                  |
| <u> </u>             | LA                   |                      |                      |                      |                      |                      |
| M                    | CA                   | 6                    | 6                    | 6                    | 15                   | 10                   |
| M                    | OCP                  | 15                   | 15                   | 15                   | 25                   | 15                   |
| -                    | ONV. OUTLET (Y / N)  | N NON FLIGER         | N NON FUED           | N NON FUEED          | N NON FLIGER         | N NON FUED           |
|                      | ISCONNECT            | NON-FUSED            | NON-FUSED            | NON-FUSED            | NON-FUSED            | NON-FUSED            |
| -                    | OLT / PH             | 460/3                | 460/3                | 460/3                | 460/3                | 460/3                |
| HF                   |                      | 1                    | 1                    | 1                    | 2                    | 1                    |
| FL                   | LA                   | 2.8                  | 2.8                  | 2.8                  | 6.5                  | 2.8                  |
|                      |                      |                      |                      |                      |                      |                      |
|                      |                      | 1                    |                      |                      |                      |                      |
|                      |                      |                      |                      |                      |                      |                      |
| UFACT                | TURER                | ENERGY LABS          |
|                      |                      | SINGLE ZONE          |
| EL NUI               | MBER                 | - CUSTOM -           |
| ATION                |                      | ROOF                 | ROOF                 | ROOF                 | ROOF                 | ROOF                 |
| /ICE                 |                      |                      |                      |                      |                      |                      |
| OF ZON               | NES                  | 1                    | 1                    | 1                    | 1                    | 1                    |
| R. WT (              | (LBS)                | 1,685                | 1,757                | 1,757                | 1,975                | 1,980                |
|                      | RIES                 | 1, 2, 3, 4, 5, 6,7   | 1, 2, 3, 4, 5, 6,7   | 1, 2, 3, 4, 5, 6,7   | 1, 2, 3, 4, 5, 6,7   | 1, 2, 3, 4, 5, 6,7   |

<sup>1.</sup> FACTORY-INTEGRATED MODULATING 0-100% DRY-BULB ECONOMIZER.

| DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NATION               | AHU-S1                 | AHU-S2                 | AHU-S3                 | AHU-S4                 | AHU-S5                     | AHU-S6                         | AHU-S7                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|----------------------------|--------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIR FLOW (CFM)       | F 000                  | 1,800                  | 2,800                  | 1.050                  | 8,000                      | 10,000                         | 0.200                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN. O.S.A. (CFM)    | 5,000                  | <u> </u>               | ·                      | 1,950                  | ·                          | 10,000                         | 9,200<br>1,100                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXT. SP (IN. WC)     | 540<br>1.5             | 165<br>1.5             | 200                    | 130<br>1.5             | 600<br>2.0                 | 790<br>2.00                    | 2.00                           |
| FILTERS         HW HEATING COIL         CHW COOLING COIL         SUPPLY FAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL SP (IN. WC)    | 4.25                   | 3.00                   | 3.00                   | 3.00                   | 2.96                       | 3.14                           | 2.99                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HP / BRAKE HP        | 7.5 / 4.65             | 3 / 1.28               | 5 / 2.13               | 3 / 1.37               | 5 / 3.38 (x2)              | 5 / 3.38 (x2)                  | 5 / 3.38 (x2)                  |
| SUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QUANTITY / SIZE      | 1 / 182                | 1 / 135                | 1 / 135                | 1 / 135                | 2 / 500                    | 2 / 560                        | 2 / 560                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFD (Y/N)            | Υ Υ                    | Υ                      | Υ                      | Y                      | Υ Υ                        | Υ Υ                            | Υ Υ                            |
| ELECTRICAL         FILTERS         HW HEATING COIL         CHW COOLING COIL         SUPPLY FAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , ,                  |                        |                        |                        |                        |                            |                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAPACITY TOT. (MBH)  | 170.0                  | 64.3                   | 84.5                   | 61.0                   | 320.8                      | 400.7                          | 400.7                          |
| CHW COOLING COIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAPACITY SENS. (MBH) | 170.0                  | 64.3                   | 74.0                   | 54.0                   | 252.9                      | 316.1                          | 316.1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAX. F.V. (FT/MIN)   | 500.0                  | 500.0                  | 500.0                  | 500.0                  | 451.0                      | 462.0                          | 462.0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROWS / FPI           | 6/9                    | 6/9                    | 6/9                    | 6/9                    | 4 / -                      | 4 / -                          | 4 / -                          |
| Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AIR PD (IN. WC)      | 1.23                   | 0.68                   | 1.28                   | 0.84                   | 0.35                       | 0.36                           | 0.36                           |
| ပ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EADB (°F)            | 85                     | 85                     | 79.6                   | 78.8                   | 84                         | 84                             | 84                             |
| ELEC ELECTRICAL FILTERS HW HEATING COIL CHW COOLING COIL SUPPLY FAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LADB (°F)            | 53.4                   | 51.9                   | 55.1                   | 53.1                   | 55                         | 55                             | 55                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EWT / LWT (°F)       | 46 / 56                | 46 / 56                | 46 / 56                | 46 / 56                | 46 / 56                    | 46 / 56                        | 46 / 56                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLOW RATE (GPM)      | 33.4                   | 12.4                   | 16.8                   | 12                     | 63.85                      | 79.76                          | 79.76                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLUID PD (FT. WC)    | 7.62                   | 5.08                   | 5.77                   | 6.97                   | 6.649                      | 6.259                          | 6.259                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BRANCH SIZE (IN.)    | 2                      | 1-1/4                  | 1-1/4                  | 1-1/4                  | 2-1/2"                     | 3"                             | 3"                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL VALVE CV     | 19.28                  | 7.16                   | 9.70                   | 6.93                   | 36.86                      | 46.05                          | 46.05                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL VALVE        | 3-WAY                  | 2-WAY                  | 2-WAY                  | 3-WAY                  | 2-WAY                      | 2-WAY                          | 2-WAY                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                        |                        |                        |                            |                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAPACITY (MBH)       | 253.0                  | 110.4                  | 98.0                   | 46.6                   | 349.2                      | 436.5                          | 436.5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAX. F.V. (FT/MIN)   | 500.0                  | 500.0                  | 500.0                  | 500.0                  | 467.0                      | 478.0                          | 478.0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROWS / FPI           | 2 / 10                 | 2 / 10                 | 2 / 10                 | 2 / 10                 | 2/-                        | 2/-                            | 2/-                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIR PD (IN. WC)      | 0.54                   | 0.32                   | 0.66                   | 0.43                   | 0.16                       | 0.16                           | 0.16                           |
| HW HEATING C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EADB (°F)            | 58                     | 58                     | 60                     | 58                     | 60                         | 60                             | 60                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LADB (°F)            | 104.9                  | 110.4                  | 92.4                   | 80.1                   | 100.0                      | 100.0                          | 100.0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EWT / LWT (°F)       | 170 / 140              | 170 / 140              | 170 / 140              | 170 / 140              | 170 / 140                  | 170 / 140                      | 170 / 140                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLOW RATE (GPM)      | 16.3                   | 6.7                    | 5.4                    | 2.5                    | 34.9                       | 44                             | 44                             |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FLUID PD (FT. WC)    | 4.74                   | 1.71                   | 1.44                   | 0.52                   | 7.20                       | 6.53                           | 6.53                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BRANCH SIZE (IN.)    | 1-1/4                  | 1.00                   | 1.00                   | 0.75                   | 1-1/4"                     | 2"                             | 2"                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL VALVE CV     | 9.4                    | 3.9                    | 3.1                    | 1.4                    | 20.2                       | 25.2                           | 25.2                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL VALVE        | 3-WAY                  | 2-WAY                  | 2-WAY                  | 3-WAY                  | 2-WAY                      | 2-WAY                          | 2-WAY                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                        |                        |                        |                            |                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QUANTITY / SIZE      | 2 / 24x24<br>2 / 12X24 | 1 / 24x24<br>1 / 12X24 | 1 / 24x24<br>1 / 12X24 | 1 / 24x24<br>1 / 12X24 | 3 / 17.5x24<br>3 / 19.5x24 | 4 / 19.5x19.5<br>4 / 19.5x24.5 | 4 / 19.5x19.5<br>4 / 19.5x24.5 |
| SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EFFICIENCY (MERV)    | MERV 13                    | MERV 13                        | MERV 13                        |
| Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FINAL PD MX (IN. WC) | 0.11                   | 0.11                   | 0.11                   | 0.11                   | 0.23                       | 0.25                           | 0.25                           |
| ≣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                        |                        |                        |                        |                            |                                |                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                        |                        |                        |                        |                            |                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOLTS / PHASE        | 460 / 3                | 460 / 3                | 460 / 3                | 460 / 3                | 460 / 3                    | 460 / 3                        | 460 / 3                        |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SCCR (kA)            | 25                     | 25                     | 25                     | 25                     | -                          | -                              | -                              |
| CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLA                  | 12.0                   | 4.8                    | 4.8                    | 4.8                    | 13.9                       | 13.9                           | 13.9                           |
| TRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MCA                  | 15                     | 6                      | 6                      | 6                      | 17.4                       | 17.4                           | 17.4                           |
| :LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | МОСР                 | 25                     | 15                     | 15                     | 15                     | 25.0                       | 25.0                           | 25.0                           |
| ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONV. OUTLET (Y / N) | N                      | N                      | N                      | N                      | N                          | N                              | N                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISCONNECT           | NON-FUSED              | NON-FUSED              | NON-FUSED              | NON-FUSED              | NON-FUSED                  | NON-FUSED                      | NON-FUSED                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOLT / PH            | 460/3                  | 460/3                  | 460/3                  | 460/3                  |                            |                                |                                |
| LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | НР                   | 2                      | 1                      | 1                      | 1                      |                            |                                |                                |
| H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FLA                  | 6.5                    | 2.8                    | 2.8                    | 2.8                    |                            |                                |                                |
| Υ<br>Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                        |                        |                        |                        |                            |                                |                                |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                        |                        |                        |                        |                            |                                |                                |
| ASSESSON TO BE SENTING COIL SECOND TO BE SEC |                      |                        |                        |                        |                        |                            |                                |                                |
| ANUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACTURER              | ENERGY LABS            | ENERGY LABS            | ENERGY LABS            | ENERGY LABS            | VTS AMERICA INC.           | VTS AMERICA INC.               | VTS AMERICA INC.               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | SINGLE ZONE            | SINGLE ZONE            | SINGLE ZONE            | SINGLE ZONE            | MULTI-ZONE VAV             | SINGLE ZONE                    | MULTI-ZONE VAV                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUMBER               | - CUSTOM -                 | - CUSTOM -                     | - CUSTOM -                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ROOF                   | ROOF                   | ROOF                   | ROOF                   | PENTHOUSE                  | PENTHOUSE                      | PENTHOUSE                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | BOOKSTORE              | STUDENT HEALTH         | FINANCIAL AID          | FINANCIAL AID OFFICE   | CENTRAL OFFICE             | STUDENT ACTIVITIES             | CAFETERIA                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1                      | 1                      | 1                      | 1                      | 3                          | 1                              | 4                              |
| )PER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WT (LBS)             | 1,998                  | 1,803                  | 1,878                  | 1,844                  | 1,658                      | 1,499                          | 1,998                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1, 2, 3, 4, 5, 6, 8    | 1, 2, 3, 4, 5, 6, 8    | 1, 2, 3, 4, 5, 7, 8    | 1, 2, 3, 4, 5, 7, 8    | 1, 2, 3, 4, 5, 8           | 1, 2, 3, 4, 5, 8               | 1, 2, 3, 4, 5, 8               |

<sup>1.</sup> FACTORY-INTEGRATED MODULATING 0-100% DRY-BULB ECONOMIZER.

AIR HANDLER SCHEDULE - STUDENT CENTER

<sup>6.</sup> FIELD-INSTALLED, DUCT-MOUNTED MODULATING POWERED EXHAUST WITH PRESSURE TRANSDUCER AND HONEYWELL JADE CONTROLLER. PROVIDE SEPARATE POWER CONNECTION PER SCHEDULE ABOVE. 7. FACTORY-INSTALLED, UNIT-MOUNTED MODULATING POWERED EXHAUST WITH PRESSURE TRANSDUCER AND HONEYWELL JADE CONTROLLER. PROVIDE SEPARATE POWER CONNECTION PER SCHEDULE ABOVE. 8. CO2 SENSOR FOR DEMAND CONTROL VENTILATION. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION.

| DESIGNATION |                        | SF-1A                 |             | RF-1A SF-1B  |             | SF-2B        | RF-2B        |
|-------------|------------------------|-----------------------|-------------|--------------|-------------|--------------|--------------|
|             |                        |                       |             |              |             |              |              |
| IR FLC      | OW (CFM)               | 23,000                | 21,730      | 19,000       | 17,950      | 12,070       | 2,310        |
|             | MANUFACTURER TECO TECO |                       | TECO        | TECO         | MARATHON    | TECO         |              |
|             | TYPE/ MODEL            | ASHE                  | AEHEUW      | ASHEUW       | ASHEUW      | 254TTDCA6026 | PROP         |
| ፳           | CAT. NO.               | D0306                 | E0158       | DH0256       | DH0106      | GT0022       | FIELD VERIF  |
| MOTOR       | HP / kW                | 30 / 22               | 15 / 11     | 25 / 18.5    | 10 / 7.5    | 15 / 11      | 1.5 / 1      |
| N<br>N      | FRAME                  | 326T                  | 286T        | 324T         | 256T        | 254T         | FIELD VERIFY |
| FA          | VOLTS / PHASE          | 208 / 3               | 208 / 3     | 208 / 3      | 208 / 3     | 208 / 3      | 208 / 3      |
|             | AMPS                   | 83.5                  | 44.5        | 69.3         | 28.5        | 40.0         | FIELD VERIFY |
|             | RPM                    | 1,175                 | 880         | 1,175        | 1,170       | 1,770        | FIELD VERIFY |
|             | MANUFACTURER           | ENERGY LABS           | ENERGY LABS | ENERGY LABS  | ENERGY LABS | ENERGY LABS  | ENERGY LABS  |
| 긥           | TYPE                   | PLENUM FAN PLENUM FAN | PLENUM FAN  | PLENUM FAN   | PLENUM FAN  | PROP         |              |
| WHEE        | ROTATION               | FIELD VERIFY          | CW          | FIELD VERIFY | CW          | FIELD VERIFY | FIELD VERIFY |
| A N         | FAN WHEEL SIZE         | FIELD VERIFY          | 365         | FIELD VERIFY | 330         | FIELD VERIFY | FIELD VERIFY |
| Α           | WIDTH                  | N/A                   | 105         | N/A          | 85          | N/A          | N/A          |





PROJECT NO. 21-12277

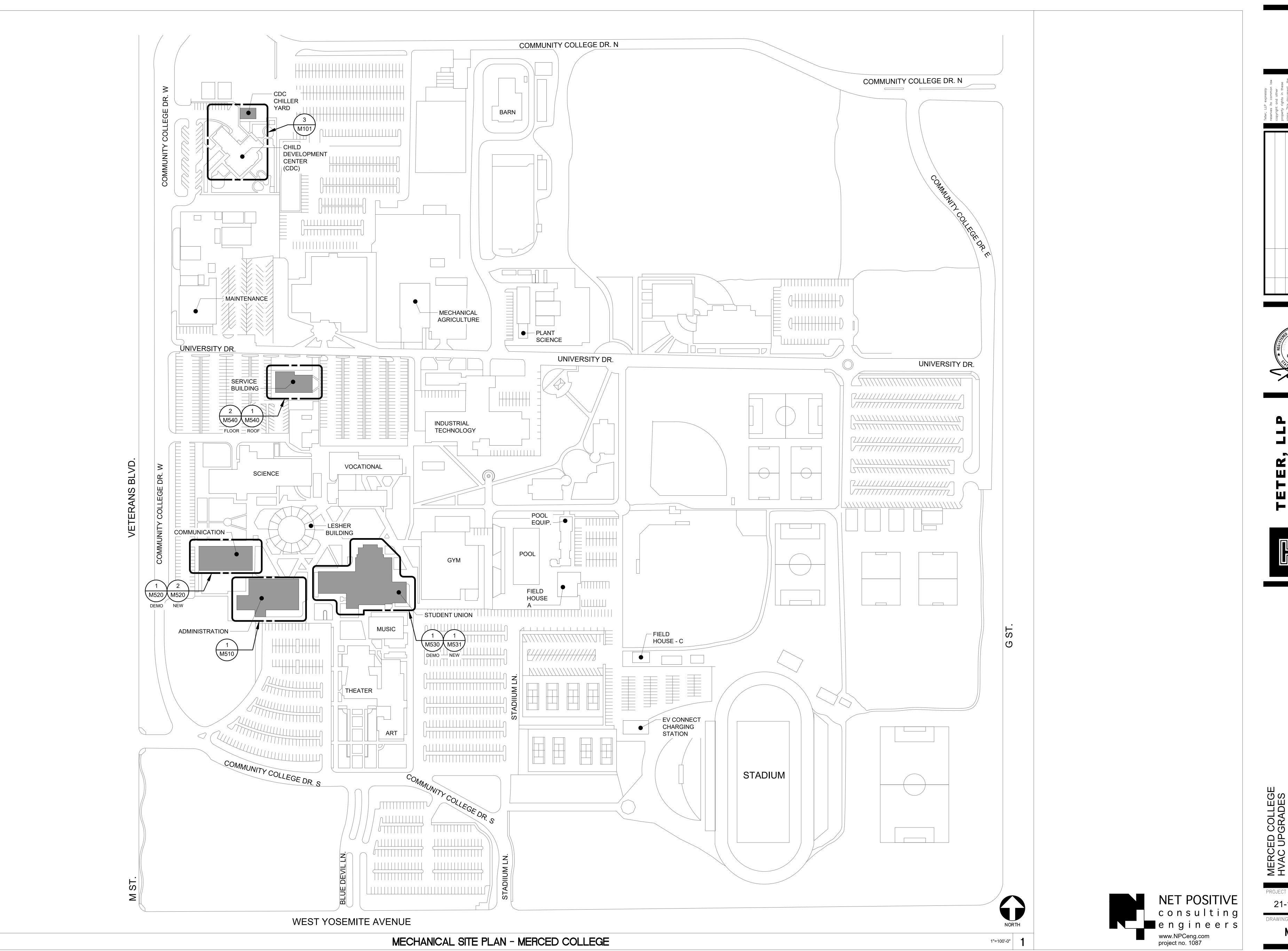
M002

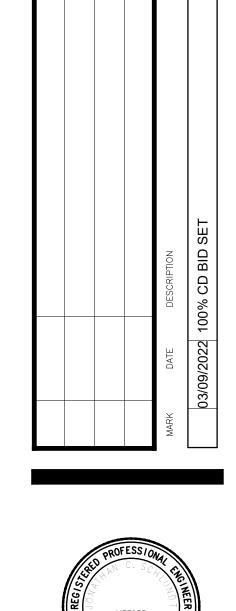
<sup>2.</sup> FIELD VERIFY FILTER QUANTITY TO BE INSTALLED IN EXISTING CABINET PRIOR TO ORDERING. 3. FIELD INSTALL ALL CONTROL AND ELECTRICAL FROM EXISTING ELECTRICAL TO

<sup>2.</sup> SINGLE-POINT POWER FOR AIR HANDLER. 3. FACTORY-MOUNTED VFD'S AND PREMIUM EFFICIENCY MOTORS AND GROUND SHAFT PROTECTION.

<sup>4.</sup> FACTORY-INSTALLED BACNET COMPATIBLE CONTROL MODULE FOR DDC TIE-INTO CAMPUS JOHNSON METASYS. 5. SUPPLY DUCT SMOKE DETECTOR (SYSTEM SENSOR D4120). PROVIDE CONDUIT AND CONDUCTORS AS REQUIRED FOR UNIT SHUTDOWN UPON DETECTION OF SMOKE.

FURNISH REMOTE TEST SWITCH (RTS451KEY) TO ELECTRICAL FOR INSTALLATION. 6. FIELD-INSTALLED, DUCT-MOUNTED MODULATING POWERED EXHAUST WITH PRESSURE TRANSDUCER AND HONEYWELL JADE CONTROLLER. PROVIDE SEPARATE POWER


CONNECTION PER SCHEDULE ABOVE.


<sup>7.</sup> CO2 SENSOR FOR DEMAND CONTROL VENTILATION. CONTRACTOR SHALL FIELD VERIFY EXACT LOCATION.

<sup>2.</sup> SINGLE-POINT POWER FOR AIR HANDLER. 3. FACTORY-MOUNTED VFD'S AND PREMIUM EFFICIENCY MOTORS AND GROUND SHAFT PROTECTION.

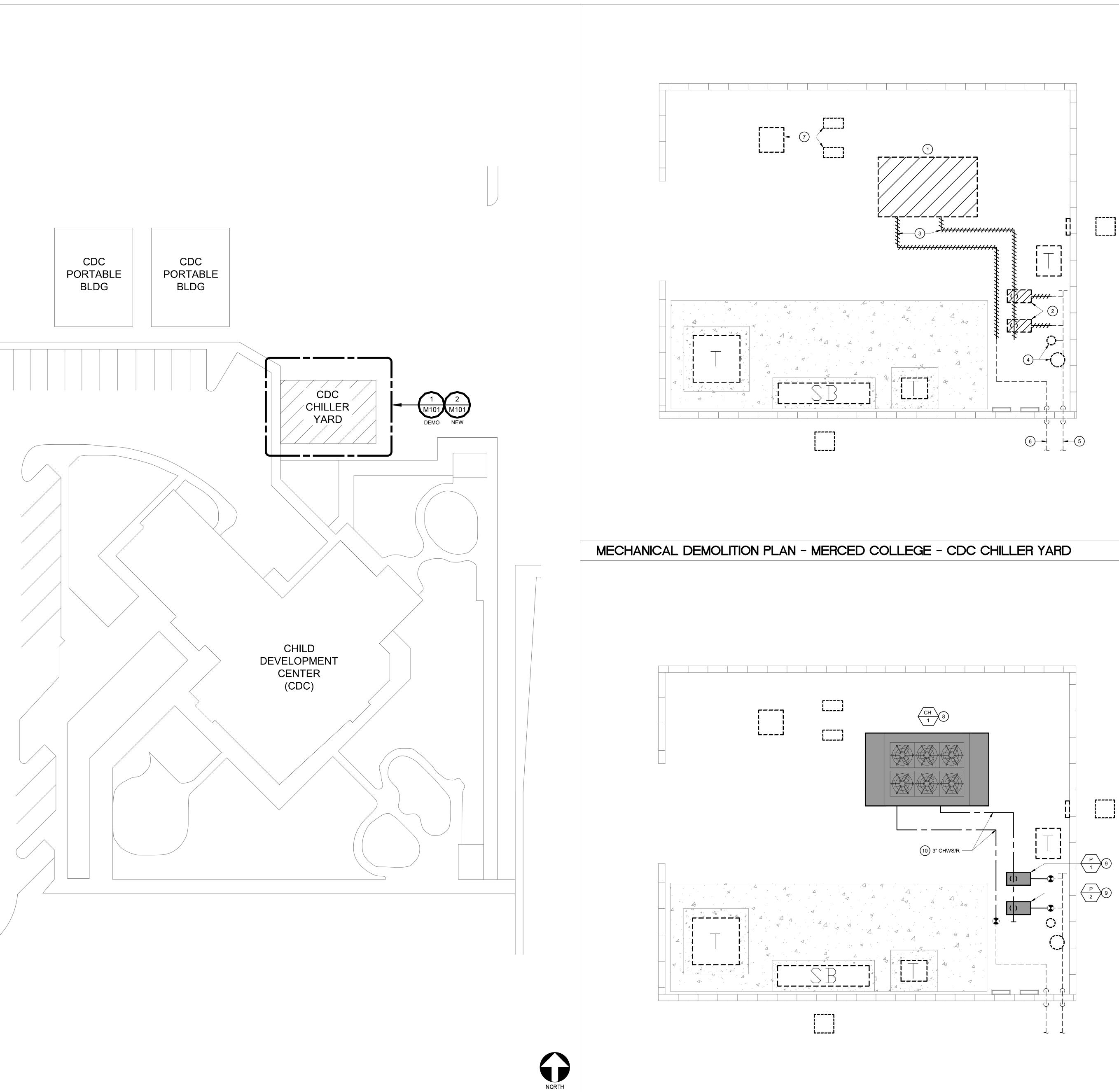
<sup>4.</sup> FACTORY-INSTALLED BACNET COMPATIBLE CONTROL MODULE FOR DDC TIE-INTO CAMPUS JOHNSON METASYS.

<sup>5.</sup> SUPPLY DUCT SMOKE DETECTOR (SYSTEM SENSOR D4120). PROVIDE CONDUIT AND CONDUCTORS AS REQUIRED FOR UNIT SHUTDOWN UPON DETECTION OF SMOKE. FURNISH REMOTE TEST SWITCH (RTS451KEY) TO ELECTRICAL FOR INSTALLATION.










ED COLLEGE UPGRADES T, MERCED, CA 95348

PROJECT NO.

21-12277

DRAWING M100





1/4" = 1'-0"

1/4" = 1'-0"

KEY PLAN

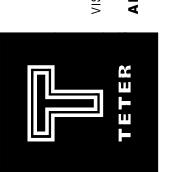
REMOVE AIR COOLED CHILLER.

(2) REMOVE GROUND MOUNTED END SUCTION PUMP. (TYP OF 2)

(3) REMOVE PIPE SHOWN HATCHED.

(E) AIR SEPARATOR AND EXPANSION TANK TO REMAIN.

5 (E) CHWR PIPE TO REMAIN.


6 (E) CHWS PIPE TO REMAIN.

(E) BOILER AND PUMPS TO REMAIN. HWS/R PIPING NOT SHOWN FOR CLARITY.

8 CHILLER MOUNTED ON (E) HOUSE KEEPING PAD PER DETAIL 1/M800.

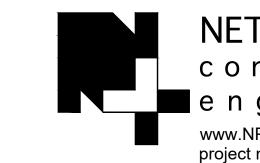
9 PUMP FRAME MOUNTED ON (E) HOUSEKEEPING PAD PER DETAIL 2/M800. PIPE MOUNTED ON (E) UNISTRUT FRAMES WITH (N) PIPE CLAMP. FIELD VERIFY ACTUAL PIPE SIZE AND MATCH EXISTING.





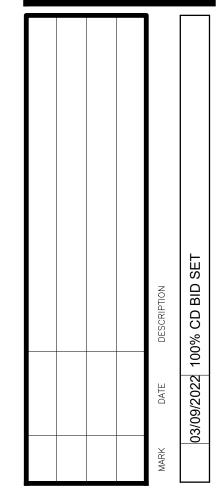
MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 95348

PROJECT NO. 21-12277


**NET POSITIVE** 

consulting

e n g i n e e r s


www.NPCeng.com project no. 1087

DRAWING M101

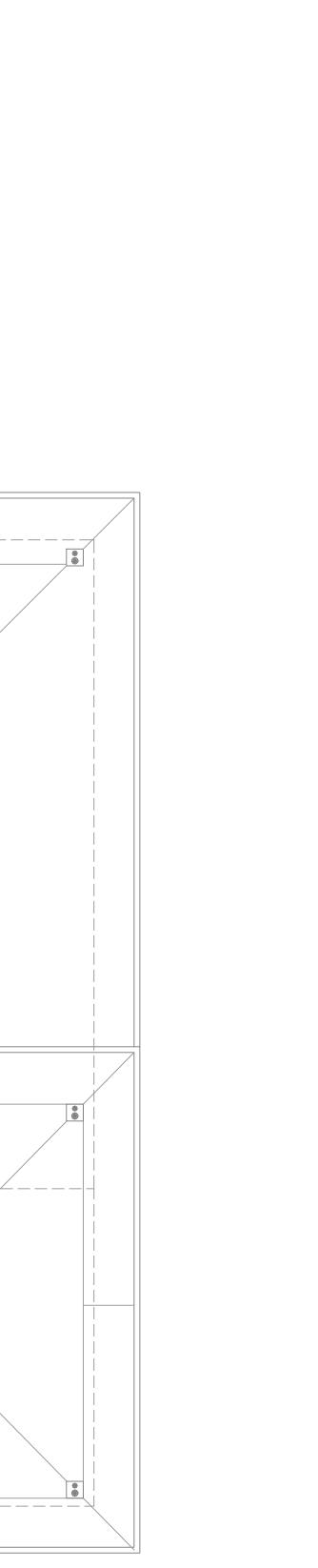


1"=100'-0"

NET POSITIVE e n g i n e e r s www.NPCeng.com project no. 1087








PROJECT NO. 21-12277

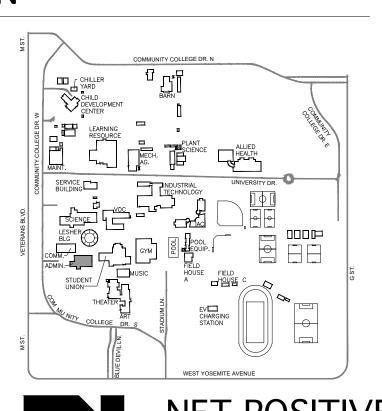
DRAWING M102

PROJECT NO. 21-12277

DRAWING M510



LOWER ROOF


**KEY PLAN** 

1/8' = 1'-0"

KEYNOTES

(E) ROOF TOP AIR HANDLER TO REMAIN.

(E) ROOF TOP PACKAGE UNIT TO REMAIN.



MECHANICAL EQUIPMENT WELL

MECHANICAL EQUIPMENT PENTHOUSE

LOWER ROOF

LOWER ROOF

MECHANICAL DEMOLITION PLAN - MERCED COLLEGE - ADMINISTRATION BLDG PENTHOUSE

### **KEYNOTES**

- 1) REMOVE PORTION OF AIR HANDLER CONTAINING DX COOLING COIL AND FURNACE. REMOVE INTERCONNECTING POWER AND CONTROL WIRING.
- REMOVE MULTIZONE DUCT SECTION, UNIT MOUNTED CONTROL DAMPERS AND ACTUATORS.
- 3 DISCONNECT 9"Ø FLUE DUCT AND PRESERVE PENETRATION THRU ROOF, (TYP OF 2)
- 4 REMOVE CONDENSING UNIT MOUNTED ON STRUCTURAL STAND. PRESERVE STRUCTURAL STAND FOR (N).
- 5 FAN SECTION TO REMAIN. SERVICE BY REMOVING DUST AND BUILDUP FROM CABINET AND FAN BLADES, REPLACE SHAFT BEARINGS AND BELT, ALIGN AND BALANCE FAN AND SHAFT.
- 6 FILTER SECTION TO REMAIN. SERVICE BY REMOVING DUST AND BUILDUP FROM CABINET. REPLACE FILTERS WITH 2" MERV-13 FILTERS. FIELD
- 7) REMOVE 1-1/2" GAS PIPING AND CAP AT WALL FOR FUTURE.
- (8) REMOVE AND PRESERVE EXTERIOR WALL LOUVER AS NECESSARY FOR EQUIPMENT ACCESS.
- 9 PRESERVE RA PENETRATIONS THRU FLOOR, MIXING BOX, AND OSA DUCT. REMOVE AND REPLACE DAMPER ACTUATORS.
- (10) PRESERVE SA PENETRATIONS THRU FLOOR. (TYP. OF 7)
- (11) REMOVE REFRIGERANT PIPING.
- (12) (N) PARTIAL AIR HANDLER SECTION MOUNTED ON (E) ISOLATORS AND WÍDE-FLANGE BEAM PER DETAIL 7/M800. PROVIDE (N) GASKET AT CONNECTION TO FAN CABINET TO REMAIN.
- (13) SUPPLY AIR DUCT DETECTOR MOUNTED PER DETAIL 10/M800.
- POC OF MULTI ZONE DUCTS TO (E) FLOOR PENETRATIONS: 20"X14", 26"X14", 16"X14", 14"X12", 15"X12", 20"X14", 20"X14".
- (15) POC OF (N) 9"Ø FLUE TO (E) ROOF PENETRATION. (TYP OF 2) (N) CONDENSATE DRAIN CONNECTION WITH TRAP PER DETAIL 3/M800. DISCHARGE INTO (E) FLOOR SINK WITH 1" AIR GAP.
- (17) (N) 7/8" LIQUID AND 1-5/8" SUCTION SUSPENDED PER 4/M800.
- (N) CONDENSING UNIT MOUNTED ON EXISTING STRUCTURE PER 22/M800.
- (N) 1-1/2" GAS ROUTED TIGHT TO STRUCTURE ON (E) SUPPORTS. PROVIDE DIRT LEG AT UNIT CONNECTION PER 6/M800.

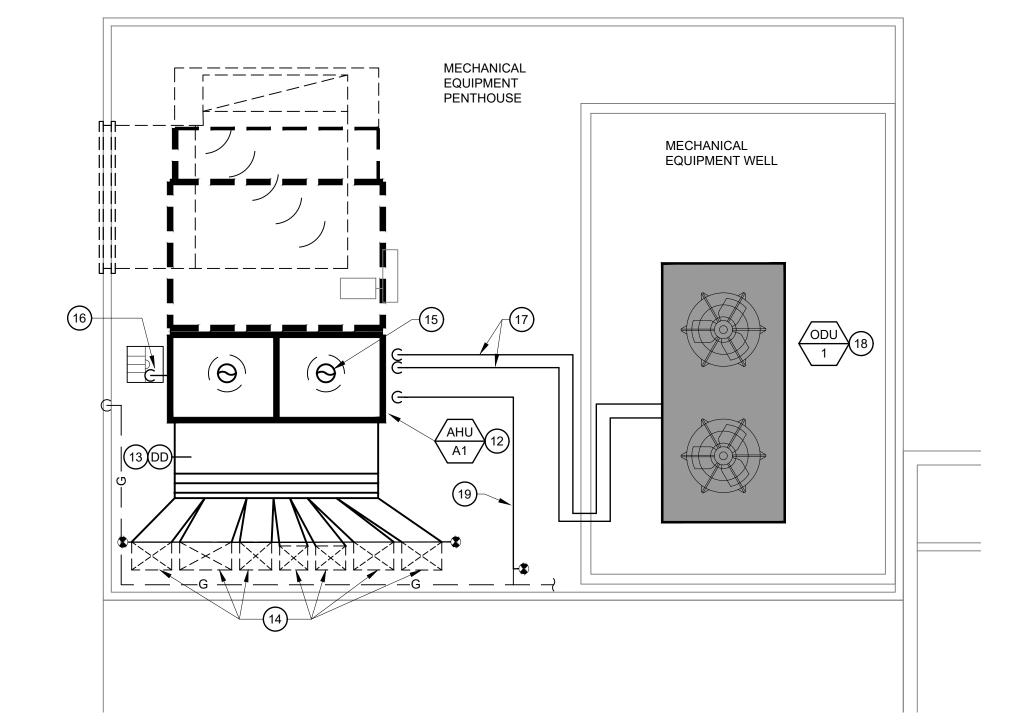
### GENERAL NOTES

A. PROVIDE FLEX CONNECTION BETWEEN DUCT AND UNIT.B. PROVIDE TURNING VANES AT ALL RECTANGULAR ELBOWS.

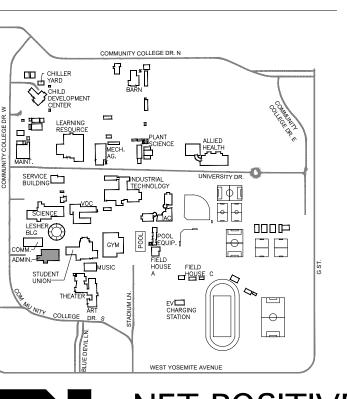


1/4" = 1'-0"




MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 95348

PROJECT NO. 21-12277


M511

DRAWING

**NET POSITIVE** consulting



**KEY PLAN** 



e n g i n e e r s www.NPCeng.com project no. 1087

## **KEYNOTES**

1) REMOVE ROOF MOUNTED AIR HANDLER, CHW AND HHW COIL VALVE ASSEMBLY. PRESERVE CONDENSATE MAIN.

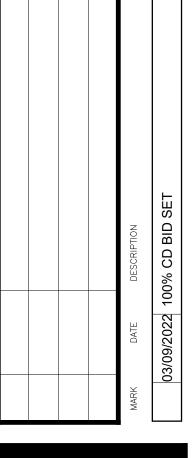
(2) REMOVE DUCT MOUNTED BAROMETRIC RELIEF DAMPER. (3) REMOVE DUCT SHOWN AS HATCHED. (TYP.)

(N) AIR HANDLER MOUNTED ON (E) ROOF CURB PER DETAIL 12/M800.

5 P.O.C. (N) CHWS/R & HHWS/R TO (E) PIPING ABOVE ROOF. PROVIDE (N) PIPING AND VALVES FOR (N) AIR HANDLER PER DETAIL 8/M800. (6) P.O.C. (N) DUCT TO (E) DUCT ABOVE ROOF. (TYP.)

(7) (E) CHWS/R & HHWS/R PIPING BELOW ROOF. (TYP.)

GENERAL NOTES


**KEY PLAN** 

A. PROVIDE FLEX CONNECTION WITH SHEET METAL COVER FOR ROOF MOUNTED DUCT AT PACKAGE UNITS. SEE DETAIL 11/M800. (TYP.)
B. PROVIDE TURNING VANES AT ALL RECTANGULAR ELBOWS.

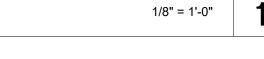
8 FIELD-INSTALLED, DUCT-MOUNTED MODULATING POWER EXHAUST. SEE EQUIPMENT SCHEDULE.

(9) (N) ROOF-MOUNTED DUCTWORK SUPPORTED PER DETAIL 15/M800. (TYP.) (10) SUPPLY AIR DUCT DETECTOR MOUNTED PER DETAIL 10/M800.

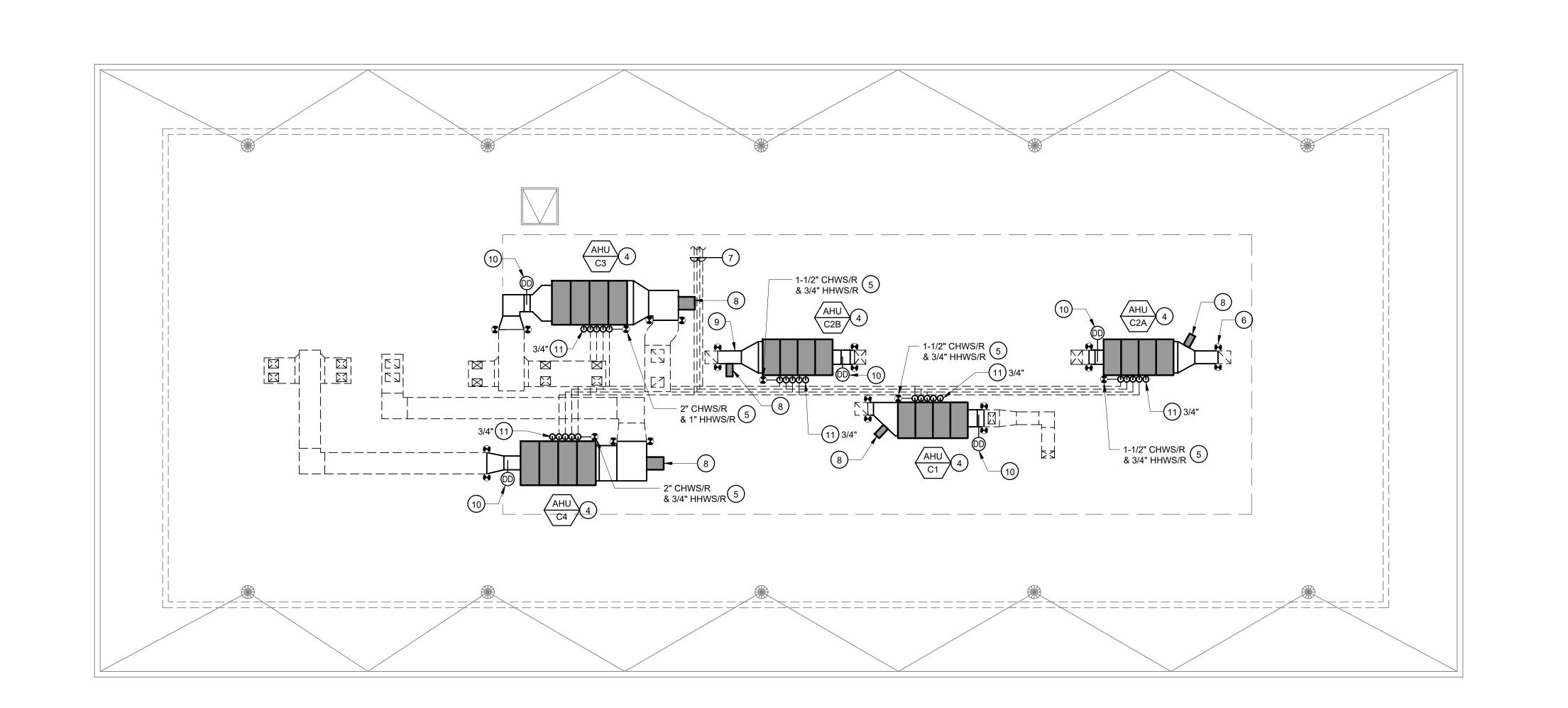
CONDENSATE DRAIN CONNECTION WITH TRAP PER DETAIL 3/M800. RE-CONNECT TO (E) CONDENSATE MAIN.



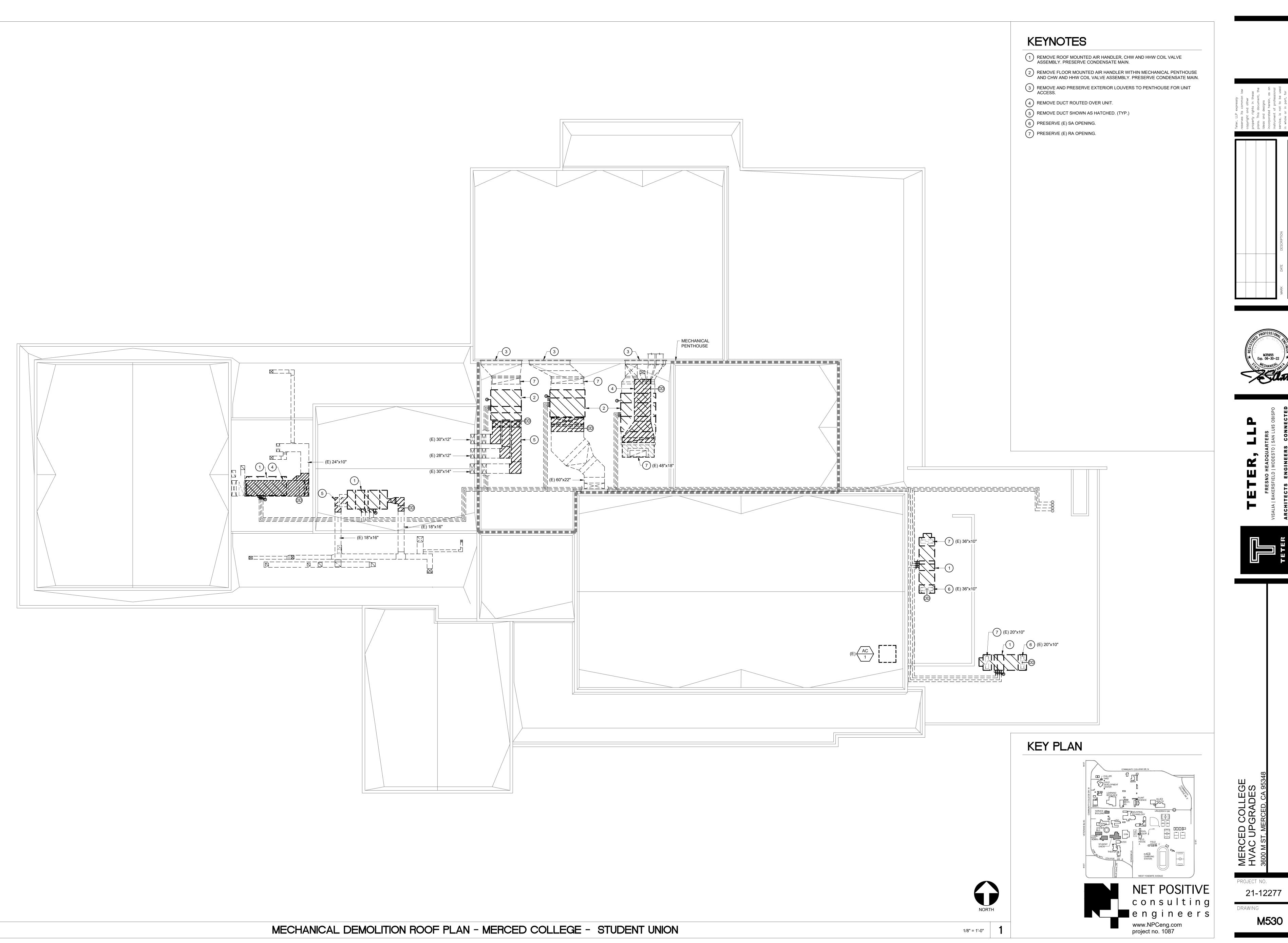


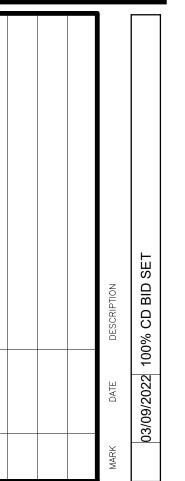



MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 95348


PROJECT NO. 21-12277 DRAWING

M520


consulting e n g i n e e r s www.NPCeng.com project no. 1087

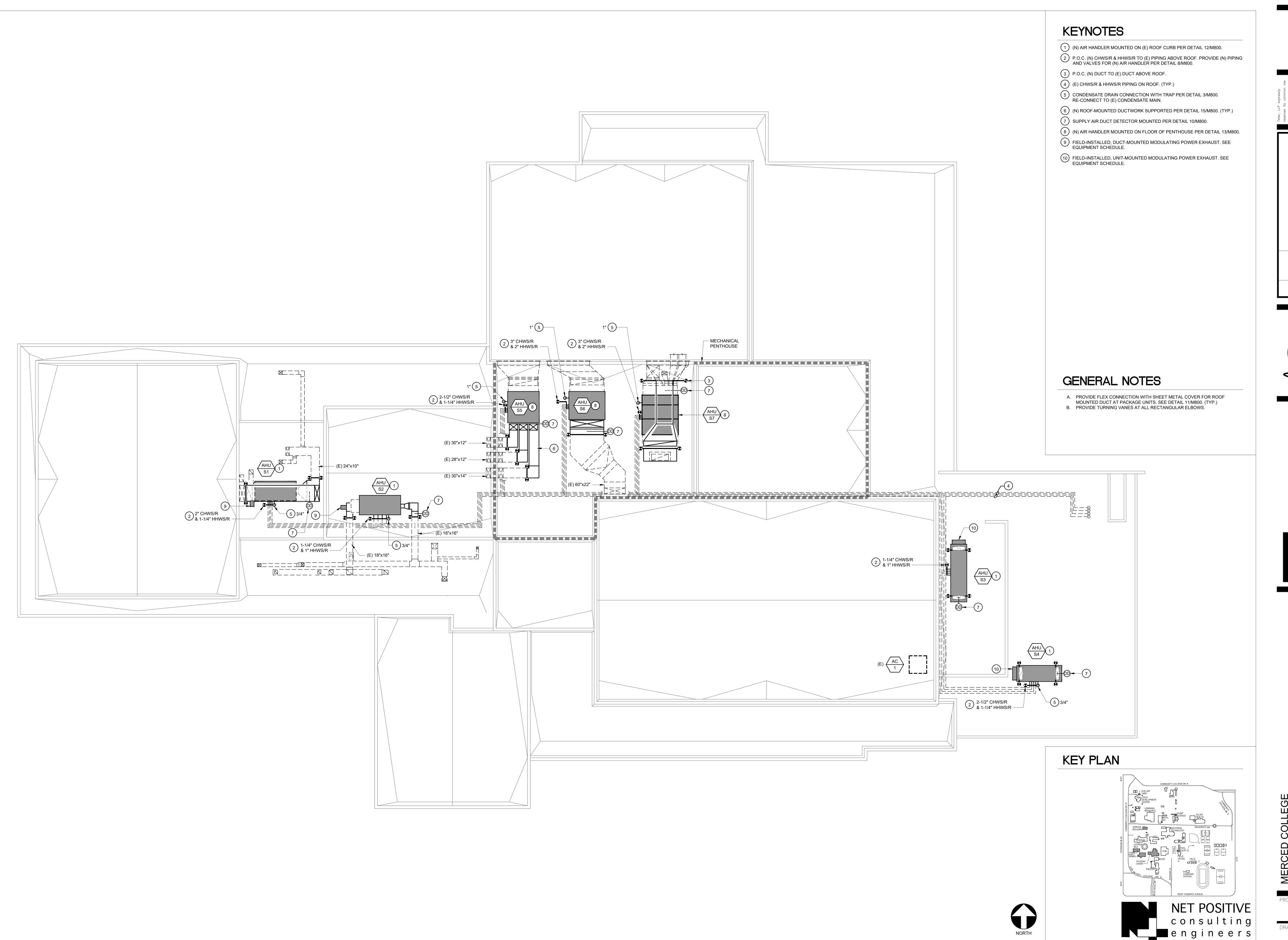


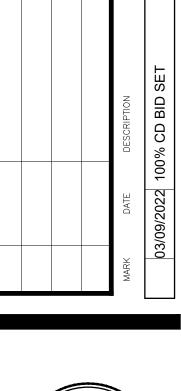

## MECHANICAL DEMOLITION ROOF PLAN - MERCED COLLEGE - COMMUNICATIONS BUILDING



MECHANICAL ROOF PLAN - MERCED COLLEGE - COMMUNICATIONS BUILDING








PROJECT NO. 21-12277

DRAWING









MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 95348

PROJECT NO. 21-12277

M531

DRAWING

www.NPCeng.com project no. 1087

## KEYNOTES

(1) (E) ROOF MOUNTED PACKAGE UNIT TO REMAIN.

2 COMPUTER ROOM AIR CONDITIONING UNIT WITH DOWN FLOW CONFIGURATION WITH MANUFACTURERS STAND MOUNTED TO SLAB ON GRADE PER 18/M800. REMOVE PORTION OF RAISED FLOOR AS REQUIRED FOR UNIT, AND PROVIDE NEW FLOOR FRAMING AND TRIM AT CUT JOINT PER MANUFACTURER INSTRUCTIONS.

OUTDOOR CONDENSING UNIT MOUNTED ON (N) ROOF TOP SLEEPERS PER 16/M800.

REFRIGERANT PIPING ROUTED DN THRU ROOF IN (N) PIPE ENCLOSURE PER 17/M800.

(5) (E) SERVER RACKS ON RAISED FLOOR, SHOWN FOR REFERENCE.

(6) (E) UPS ON RAISED FLOOR, SHOWN FOR REFERENCE.

(7) (E) WALL MOUNTED FAN COIL TO REMAIN.

(E) SUPPLY GRILLE FROM ROOF MOUNTED PACKAGE UNIT TO REMAIN (TYP OF 4)

(E) RETURN GRILLE FROM ROOF MOUNTED PACKAGE UNIT TO REMAIN (TYP OF 2)

(10) STORAGE SHELVES RELOCATED FROM NORTH WALL BY DISTRICT.

(E) ROOM HUMIDIFIER TO REMAIN.

(E) HALON SYSTEM TO REMAIN.

(13) ROUTE REFRIGERANT PIPING UP THRU ROOF PER DETAIL 17/M800.

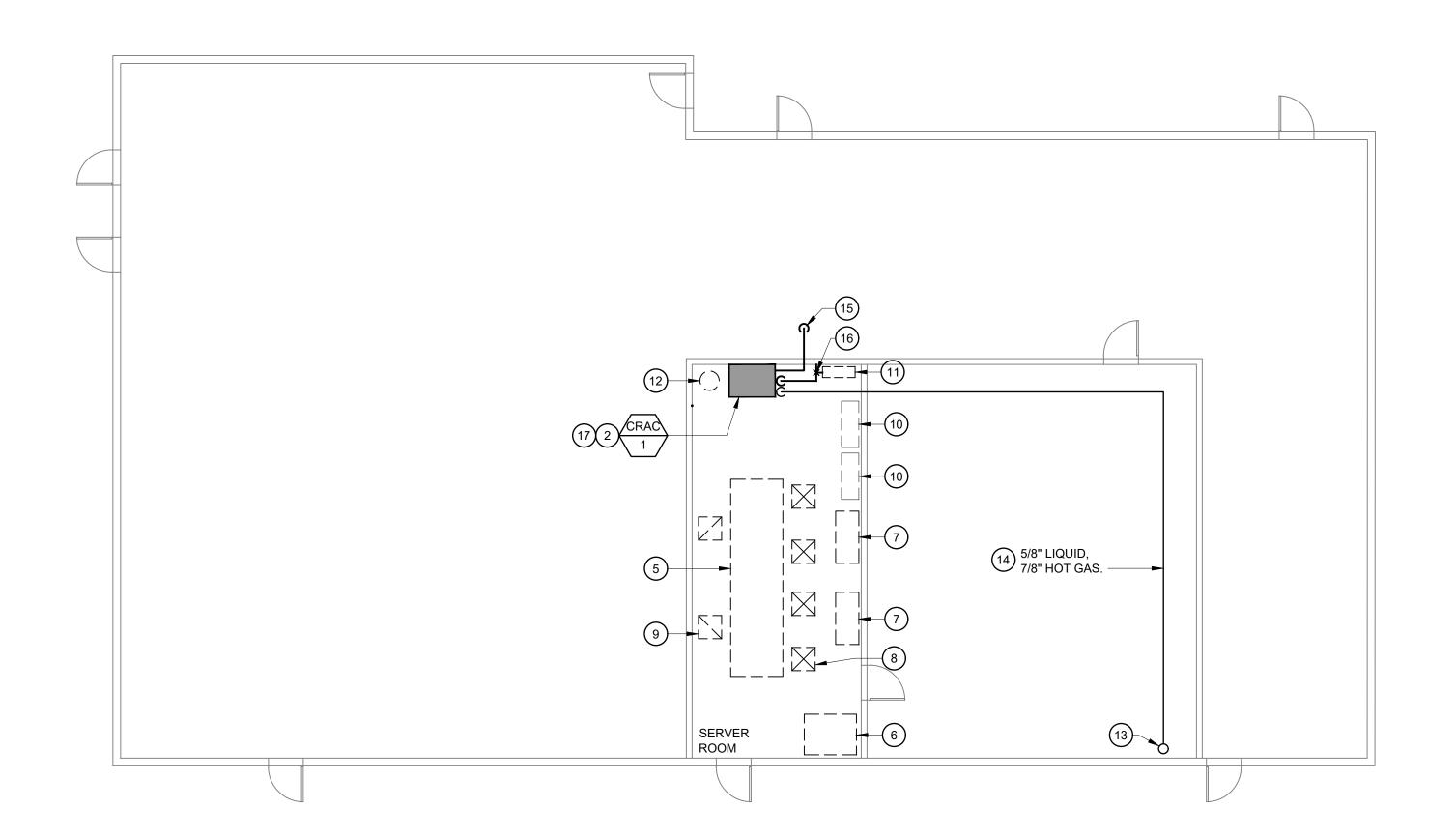
(14) REFRIGERANT PIPING SUSPENDED IN ATTIC PER 4/M800.

TERMINATE 1" CONDENSATE INTO (E) MOP SINK WITH 2" AIR GAP ABOVE FLOOD RIM.

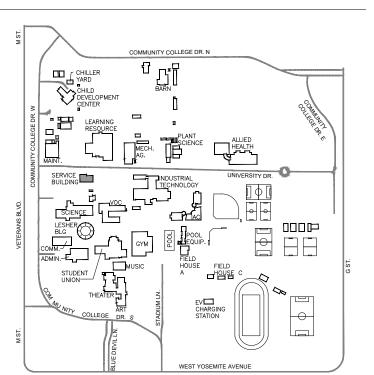
(16) POC, 1/4" CW TO (E) CW SUPPLY AT HUMIDIFIER.

CONTROLS AUTOMATION: SEQUENCE CRAC SYSTEM AS PRIMARY SYSTEM FOR ROOM COOLING. IN THE EVENT OF CRAC FAILURE:

A. ALARM SHALL NOTIFY USER.


B. ROOF TOP PACKAGE UNIT AND IN-ROOF FAN COILS SHALL ENERGIZE TO COOL THE SPACE.

### GENERAL NOTES


A. SUPPORT ROOF MOUNTED REFRIGERANT PIPING PER 21/M800.

B. SUPPORT SUSPENDED REFRIGERANT PIPING PER 4/M800.

MECHANICAL ROOF PLAN - MERCED COLLEGE - SERVICE BUILDING



### **KEY PLAN**



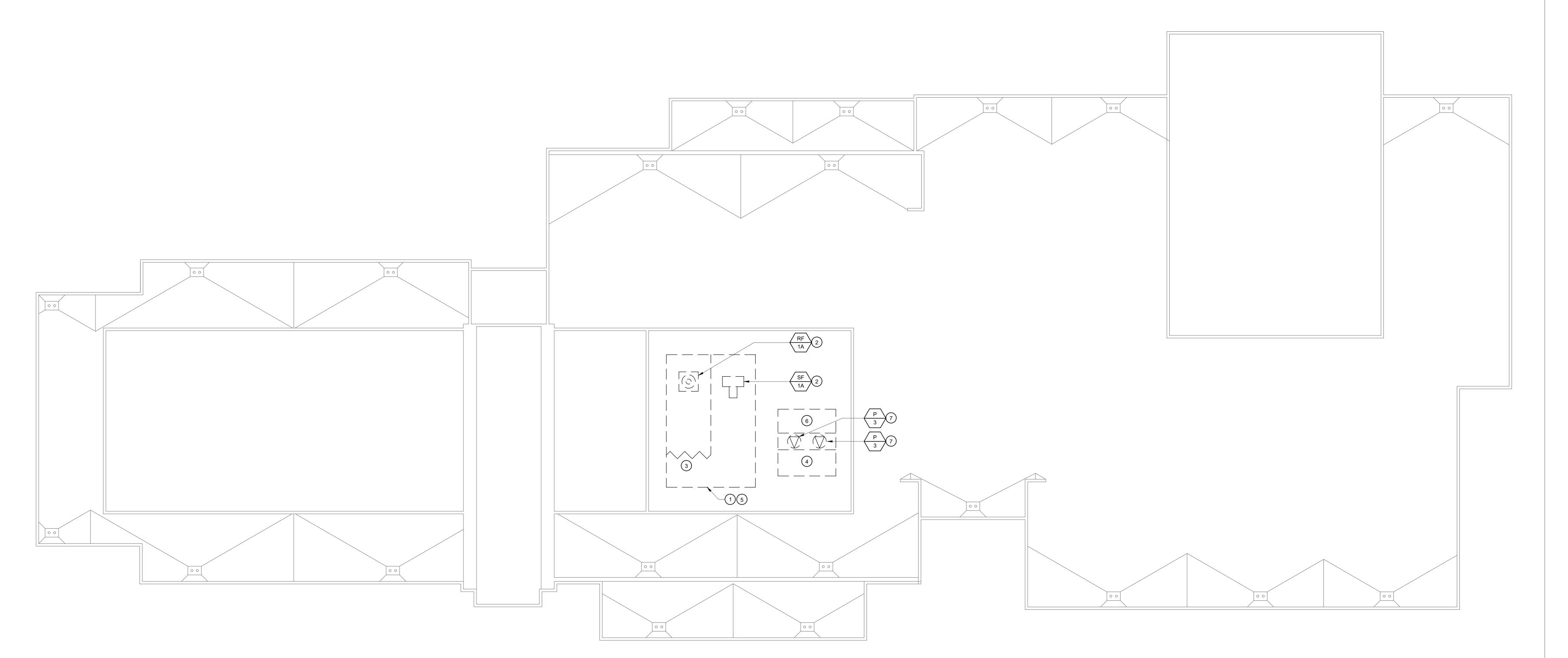
engineers en gineers

NET POSITIVE consulting www.NPCeng.com project no. 1087



1/8" = 1'-0"

21-12277 DRAWING

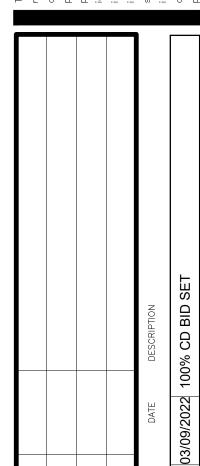

PROJECT NO.

MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 95348

M540

MECHANICAL FLOOR PLAN - MERCED COLLEGE - SERVICE BUILDING

- 1 EXISTING AIR HANDLER TO REMAIN. SERVICE BY REMOVING DUST AND BUILD-UP THROUGHOUT CABINET. PRESSURE WASH EVAPORATOR COIL AND HOT WATER COIL. VACUUM AND CLEAN ALL CONTROL DEVICES, AIR MONITORING STATION, AND ACTUATORS. TEST ALL DEVICES TO ENSURE PROPER FUNCTION AFTER SERVICE.
- REMOVE AND REPLACE FAN WHEEL AND MOTOR WITH SAME SIZE AND ELECTRICAL. MOUNT ON (E) FAN FRAME W/ HARDWARE TO MATCH EXISTING. FIELD VERIFY FAN WHEEL AND MOTOR PRIOR TO ORDERING.
- REPLACE FILTERS WITH 4" PLEATED MERV-13 FILTERS. 9EA 24"X24" AND 6EA 12"X24"
- 4 EXISTING CUSTOM DX COOLING TOWER TO REMAIN (ORIGINALLY MANUFACTURED BY ENERGY LABS INC.). SERVICE BY PRESSURE WASHING COPPER TUBES AND STAINLESS STEEL BASIN, REPLACE WATER NOZZLES, CHEMICALLY FLUSH SYSTEM TO REMOVE ALL SCALE. REPLACE FILTER MEDIA.
- 5 LEAK TEST THE EXISTING REFRIGERANT SYSTEM AND REPAIR ANY LEAKS. EVACUATE AND DISPOSE OF R22, AND REPLACE WITH R-407C. CALIBRATE AND RESET THERMAL EXPANSION VALVE, PRESSURE REGULATORS, AND HIGH-PRESSURE SAFETY CONTROLS FOR NEW REFRIGERANT. REPLACE FILTER DRIERS PER MANUFACTURER INSTRUCTIONS. PROVIDE COMPRESSOR LUBRICANT COMPATIBLE WITH NEW REFRIGERANT.
- (E) CONTROL AND COMPRESSOR CABINET TO REMAIN.
- 7 REMOVE AND REPLACE TOWER PUMP WITH SAME SIZE AND ELECTRICAL. MOUNT ON (E) PLATFORM W/ HARDWARE TO MATCH EXISTING. FIELD VERIFY PRIOR TO ORDERING.






1/8" = 1'-0"

NET POSITIVE
consulting
engineers
www.NPCeng.com
project no. 1087

Teter, LLP expressly reserves its common law copyright and other property rights in these plans. This document, the ideas and designs incorporated herein, as an instrument of professional service, is not to be used in whole or in part, for the contract of the contract o





TETER, LLP



SI IDIN DI BANOS CAMPI IS

MERCED COLLEGE
HVAC UPGRADES
3600 M ST, MERCED, CA 95348

MECHANICAL ROOF PLAN

PROJECT NO.

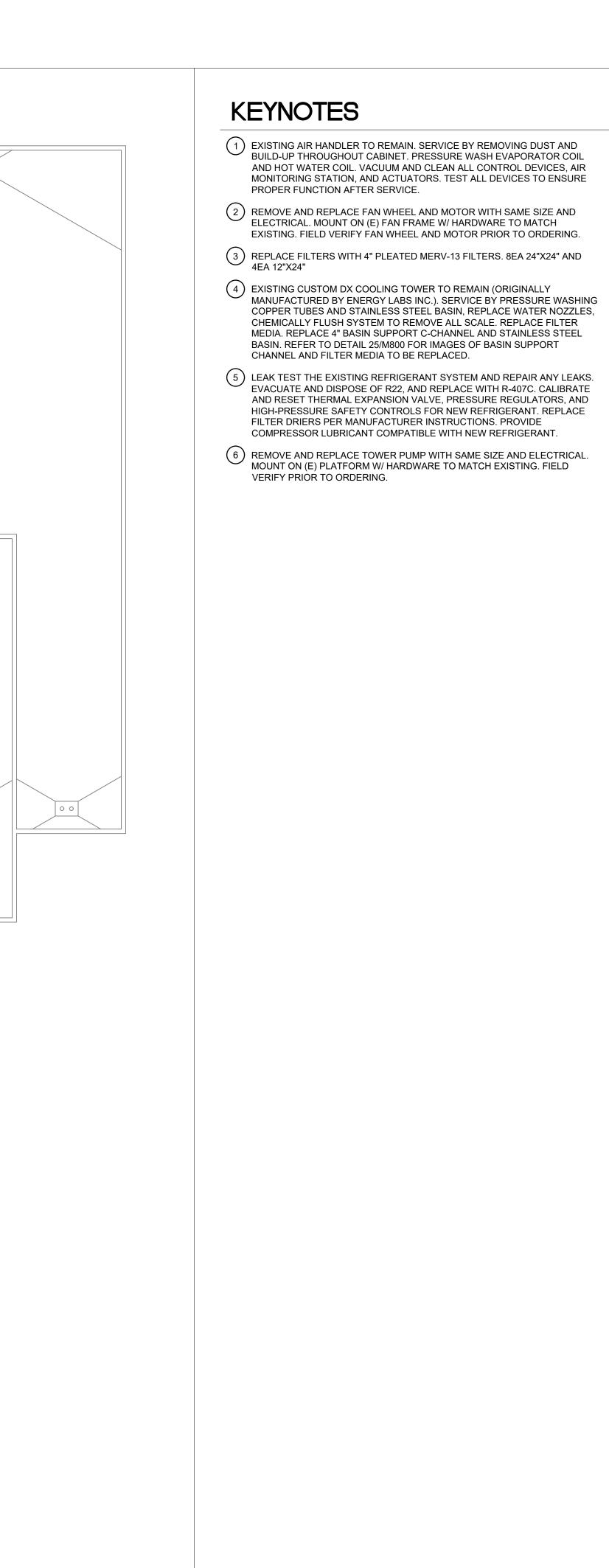
PROJECT NO.

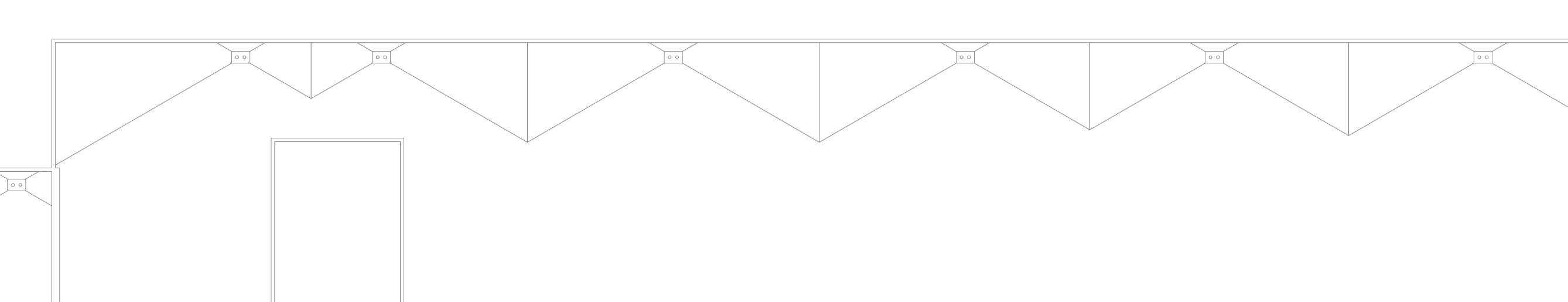
21-12277

DRAWING

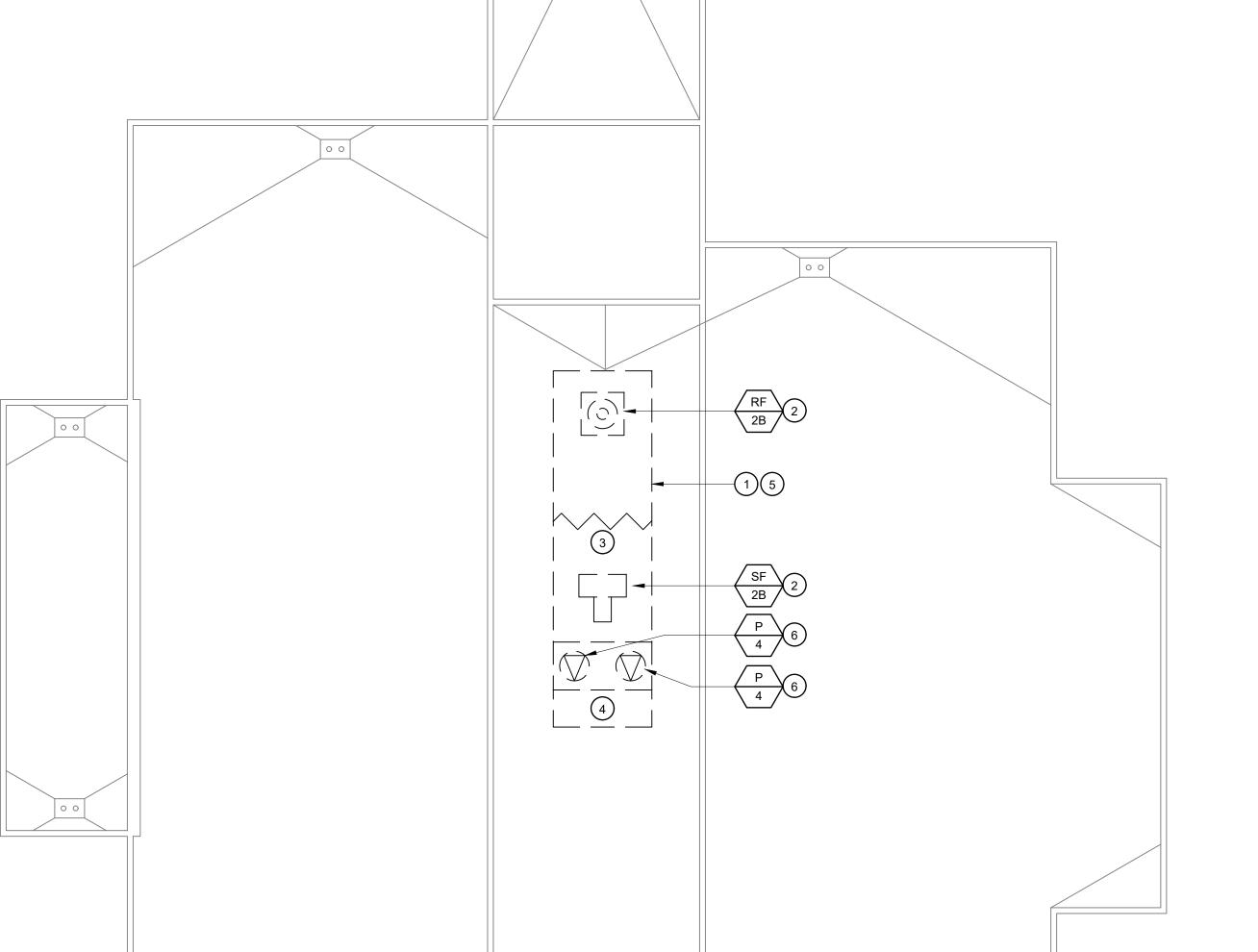
M550

PROJECT NO.

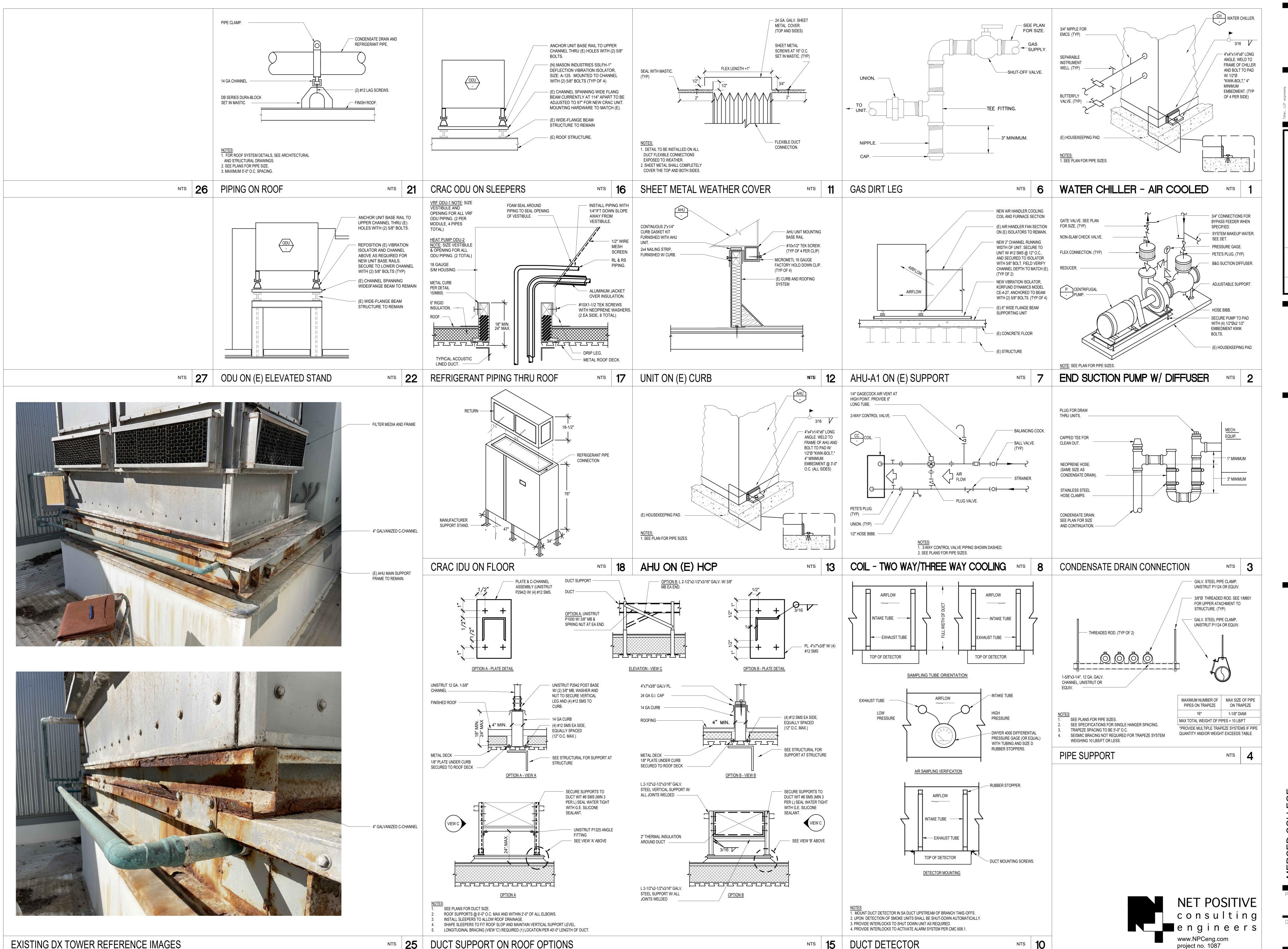

**21-12277**DRAWING

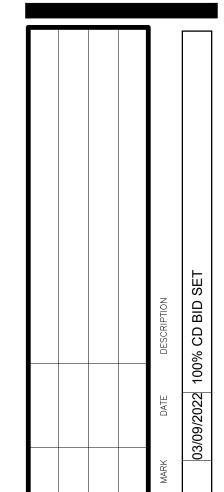

M551

consulting engineers


www.NPCeng.com
project no. 1087

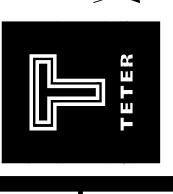
NET POSITIVE





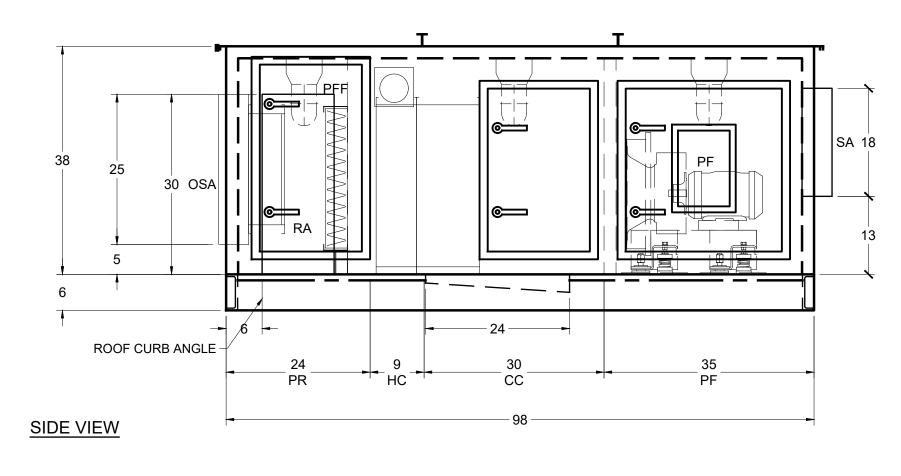


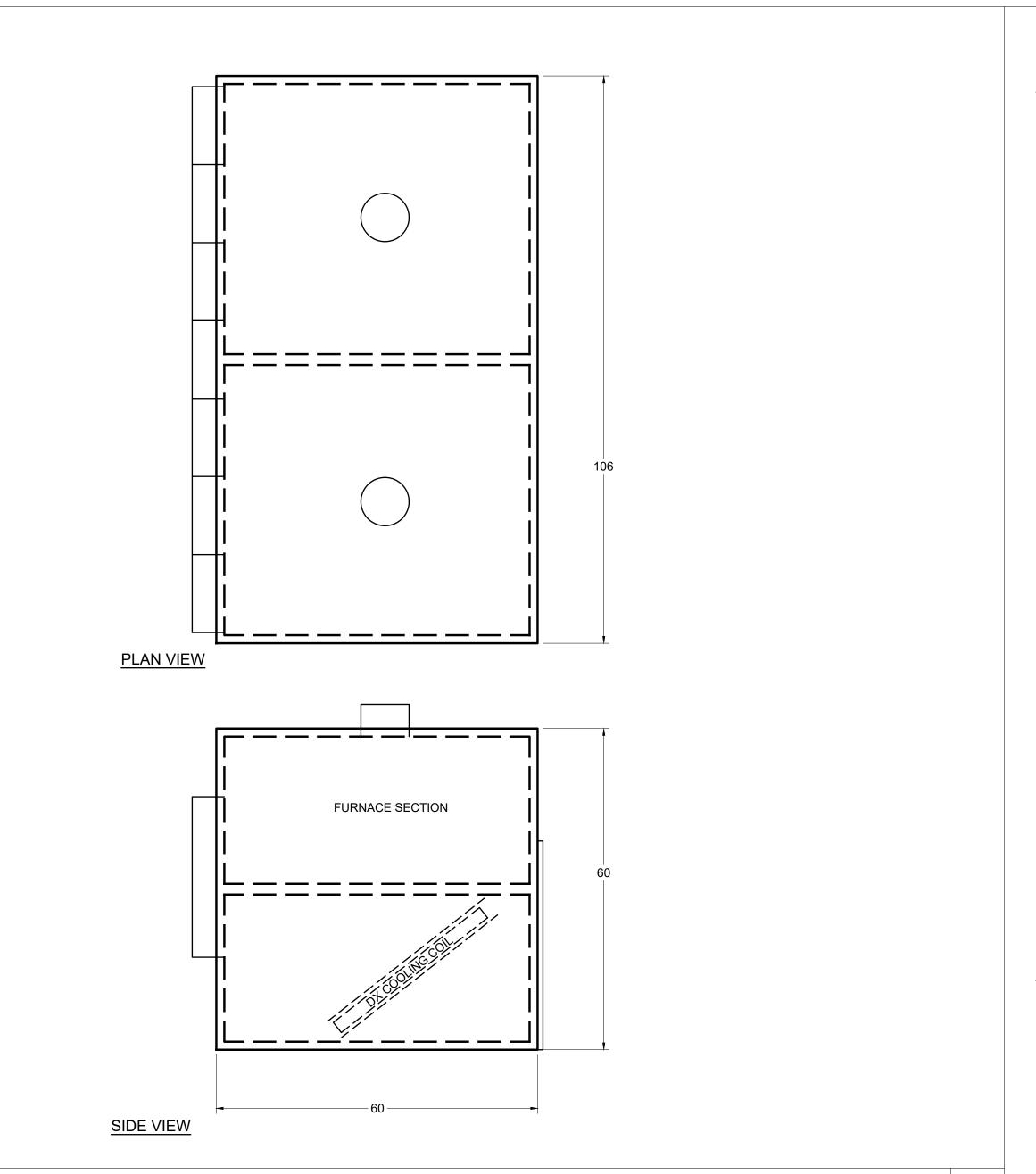










PROJECT NO. 21-12277

project no. 1087

DRAWING M800



AHU-C2A DETAIL



KEYNOTES

### DETAIL LEGEND

OSA = Outside Air RA = Return Air NS = Near Side HS = High Side

SCAV= Scavenger Air SA = Supply Air EA = Exhaust Air FS = Far Side LS = Low Side

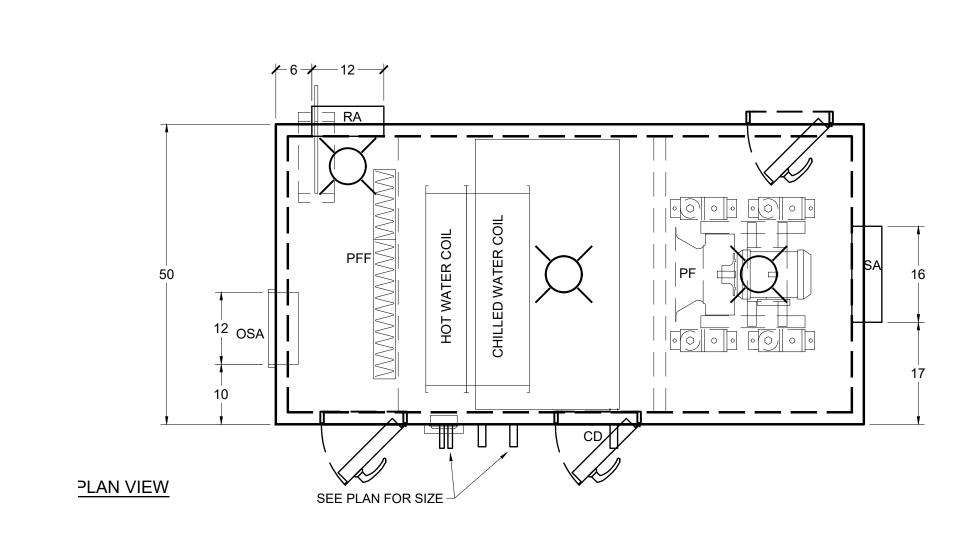
MB = Mixing Box MS = Moisture Separator

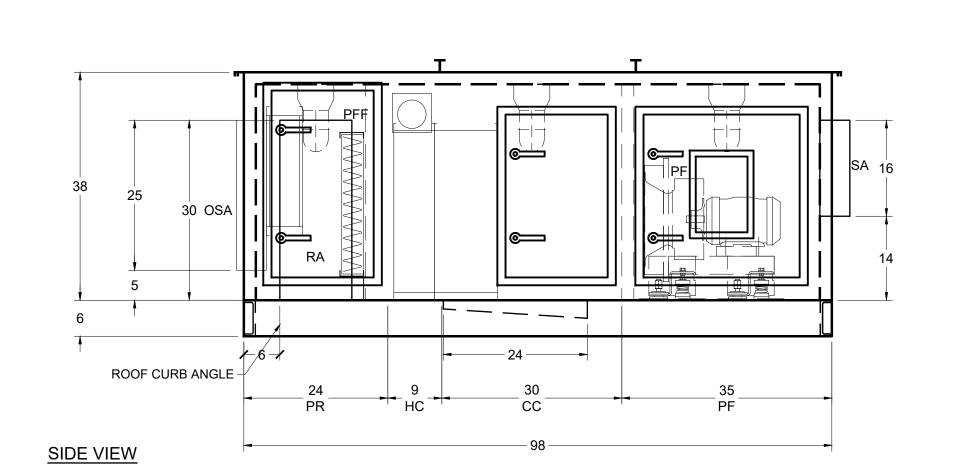
MZ = Multizone PF = Plenum Fan

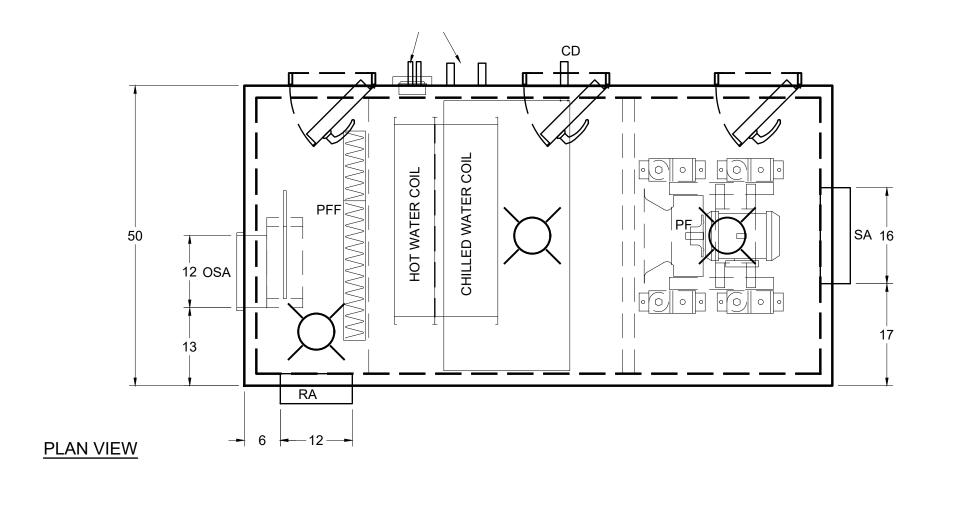
PL = Plenum PR = Pre-Filter SC = Steam Coil

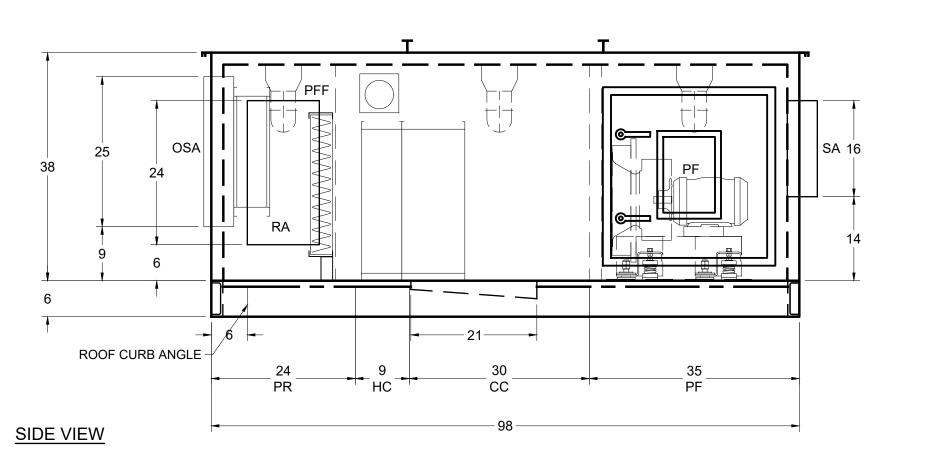
ST = Sound Trap VF = Vee Filter

PFF = Pre/Final Filter


AB = Air Blender CC = Cooling Coil CU = Condensing Unit DE = Direct Evaporative DF = DWDI Fan DX = DX Coil EC = Economizer


FF = Final Filter FU = Furnace HC = Heating Coil IE = Indirect Evaporative
OLF = OptilineHE Fan


1. All dimensions are in inches unless otherwise specified.


Opening dimension tolerances are ± 0.50, all other cabinet dimension tolerances are ± 1.00.

3. Lifting lug locations on mechanical drawings are for representation only. Actual lifting location will vary depending on Energy Labs Engineering review.



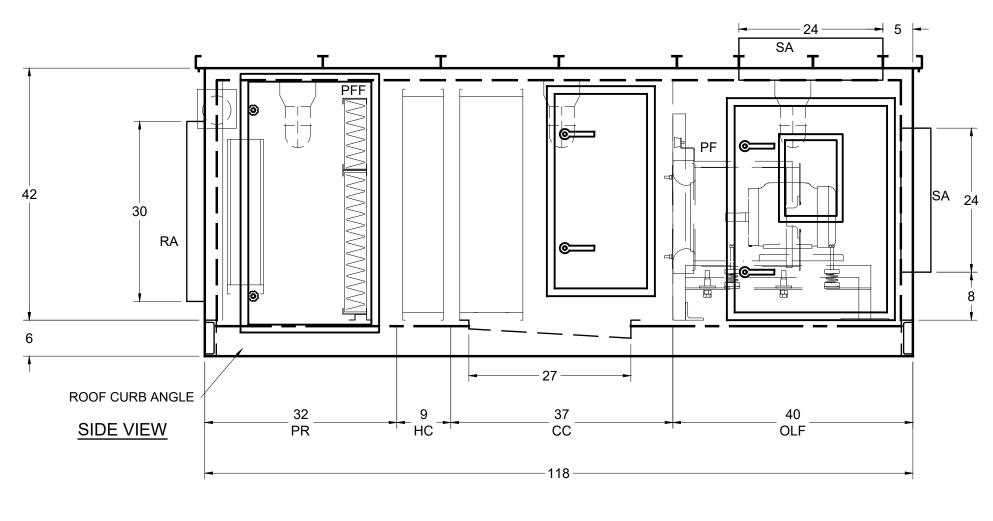


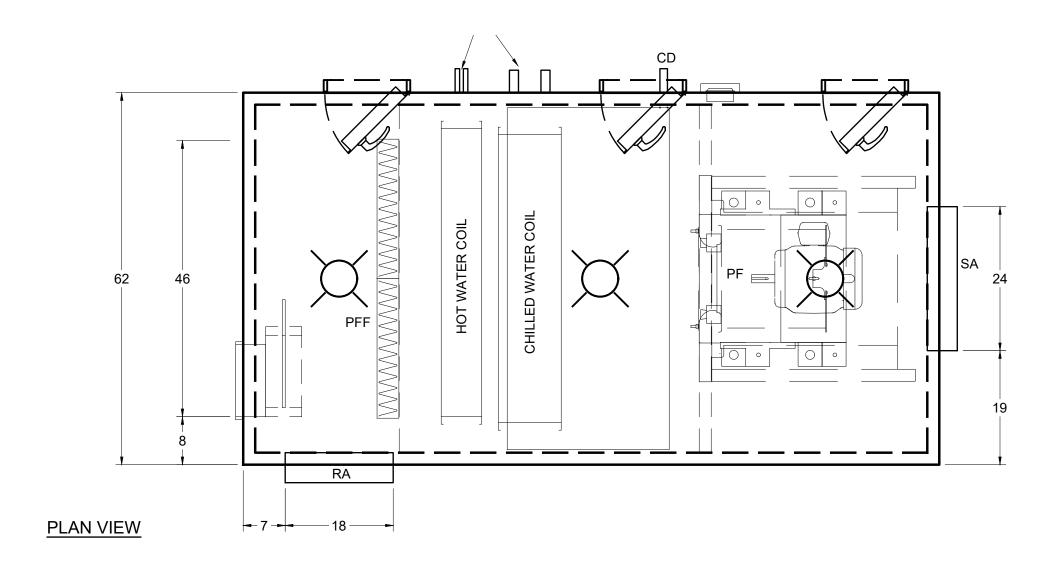


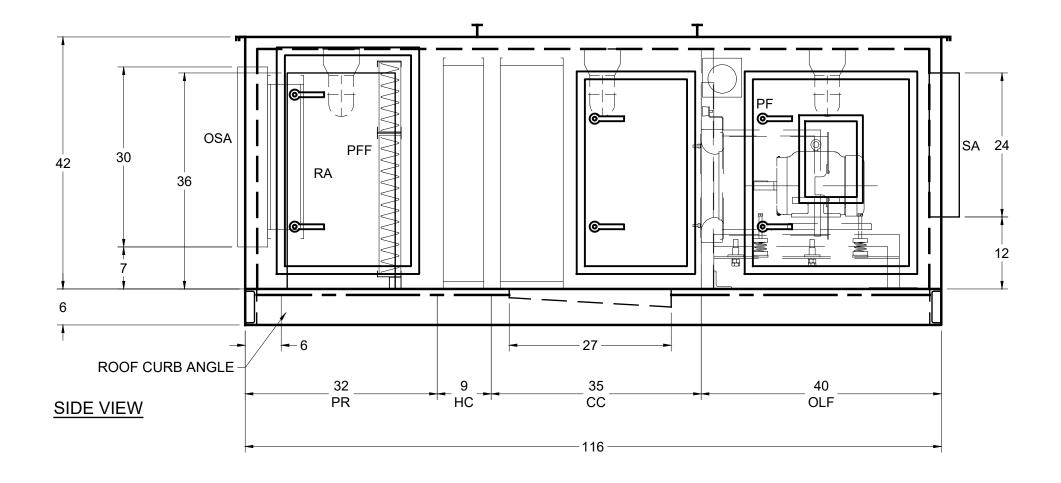


NET POSITIVE consulting e n g i n e e r s www.NPCeng.com project no. 1087

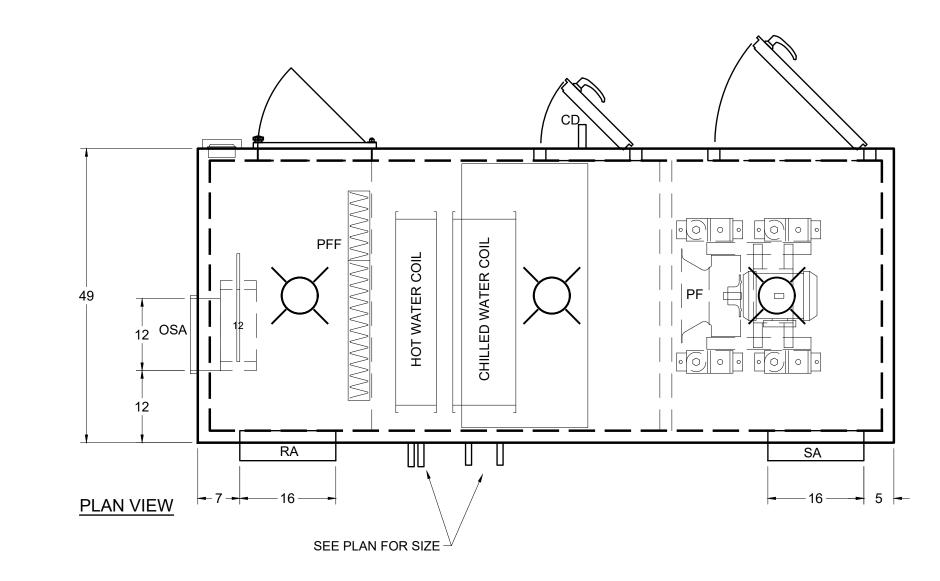
PROJECT NO. **21-12277**DRAWING

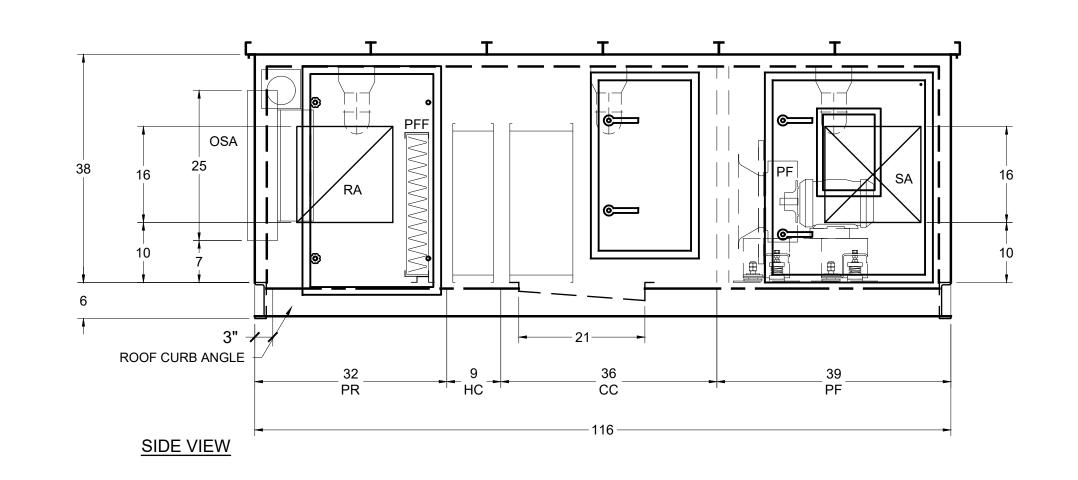

M810

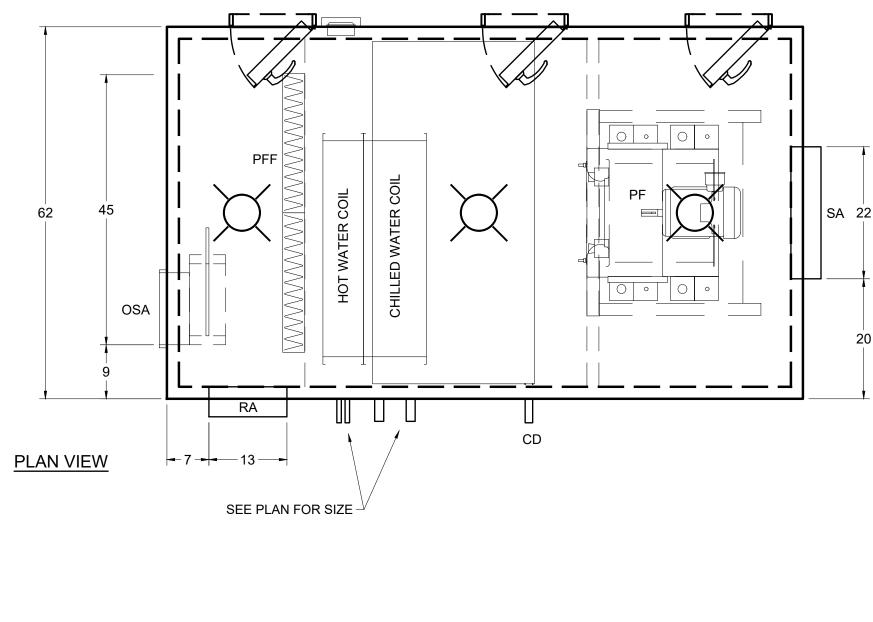

AHU-C1 DETAIL

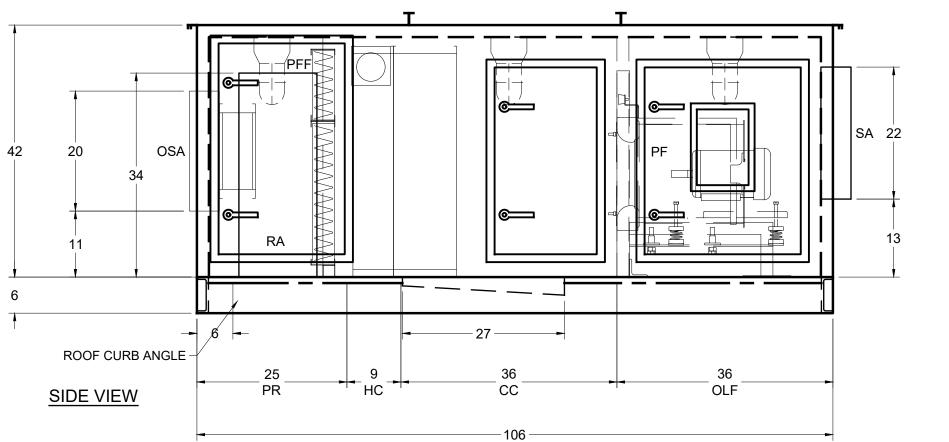

AHU-A1 DETAIL

AHU-C2B DETAIL

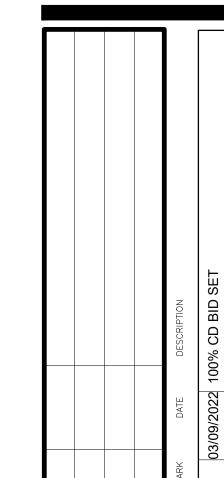

NTS 2




AHU-S1 DETAIL AHU-C3 DETAIL
















## DETAIL LEGEND

SCAV= Scavenger Air SA = Supply Air EA = Exhaust Air FS = Far Side LS = Low Side OSA = Outside Air RA = Return Air NS = Near Side HS = High Side

MB = Mixing Box MS = Moisture Separator

MZ = Multizone PF = Plenum Fan

PL = Plenum PR = Pre-Filter SC = Steam Coil

ST = Sound Trap VF = Vee Filter

PFF = Pre/Final Filter

AB = Air Blender CC = Cooling Coil CU = Condensing Unit DE = Direct Evaporative DF = DWDI Fan DX = DX Coil

EC = Economizer FF = Final Filter FU = Furnace HC = Heating Coil IE = Indirect Evaporative
OLF = OptilineHE Fan

1. All dimensions are in inches unless otherwise specified.

Opening dimension tolerances are ± 0.50, all other cabinet dimension tolerances are ± 1.00.

3. Lifting lug locations on mechanical drawings are for representation only. Actual lifting location will vary depending on Energy Labs Engineering review.

PROJECT NO. 21-12277

DRAWING M811

NET POSITIVE engineers www.NPCeng.com project no. 1087

AHU-S2 DETAIL

AHU-C4

NTS 2

SIDE VIEW

AHU-S4 DETAIL

AHU-S6 DETAIL

KEYNOTES

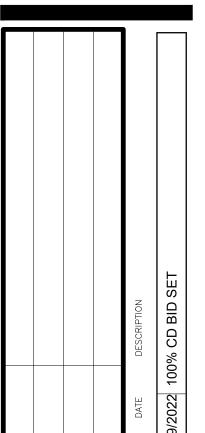




PROJECT NO.

NET POSITIVE

consulting


e n g i n e e r s

NTS 2

www.NPCeng.com project no. 1087

21-12277 DRAWING M812

er, LLP expressly erves its common law yright and other perty rights in these is. This document, the sa and designs orporated herein, as an rument of professional vice, is not to be used whole or in part, for



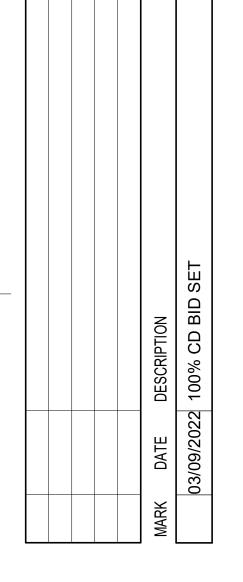


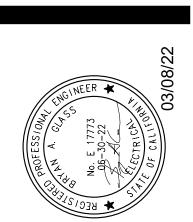


MERCED, CA 95348

MERCED COLLEGE HVAC UPGRADES 3600 M ST, MERCED, CA 9534

PROJECT NO.


**21-12277**DRAWING


M813

ELECTRICAL POWER PLAN - CDC CHILLER YARD

### KEYNOTES

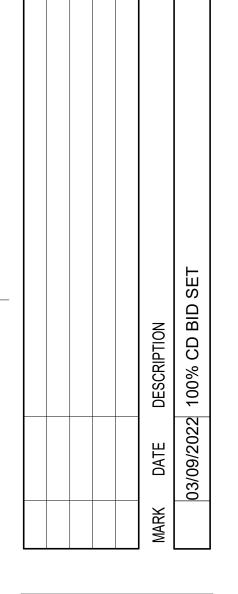
- DISCONNECT EXISTING AIR COOLED CHILLER. DISCONNECT AND REMOVE EXISTING FLEX CONDUIT. PRESERVE EXISTING BRANCH CIRCUIT FEEDER.
- DISCONNECT EXISTING PUMPS. DISCONNECT AND REMOVE EXISTING FLEX CONDUIT AND EXISTING CONDUCTORS TO JUNCTION BOX EQUIPMENT DISCONNECTS. MOTOR STARTERS AND CONTROL WIRING SHALL REMAIN AND BE CONNECTED IN ASSOCIATION WITH NEW PUMPS.
- 3 PROVIDE NEW 18"x18"x6" NEMA 3R PULLCAN. PROVIDE NEW 2" LIQUIDTIGHT FLEXIBLE CONDUIT WITH 3#2/0 CU THWN AND 1#4 CU GND AND PROVIDE CONNECTION TO 460V, 3φ, 145 MCA, 175 MOCP WATER
- PROVIDE NEW 3/4"C LIQUIDTIGHT FLEXIBLE CONDUIT WITH 3#12 CU THWN AND 1#12 CU GND. PROVIDE CONNECTION TO 460V, 3\(\phi\), 3HP PUMP 'P-1'.
- PROVIDE NEW 3/4" LIQUIDTIGHT FLEXIBLE CONDUIT WITH 3#12 CU THWN AND 1#12 CU GND. PROVIDE CONNECTION TO 460V, 3φ, 3HP PUMP 'P-2'.

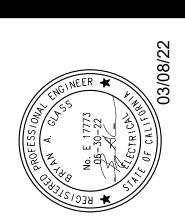






## **GENERAL NOTES**


- A. ELECTRICAL FACILITIES SHOWN DASHED ARE EXISTING: THOSE SHOWN LIGHTWEIGHT (FADED) SHALL REMAIN AND REQUIRE MODIFICATION AS NOTED.
  - THOSE SHOWN HEAVYWEIGHT (DARK) REQUIRE REMOVAL AS NOTED.
- B. EXISTING ELECTRICAL FACILITIES AND CIRCUITING SHOWN ARE BASED ON LIMITED RECORD DRAWINGS AND LIMITED SITE VISITS. THE DRAWINGS MAY NOT ACCURATELY REPRESENT ACTUAL EXISTING CONDITIONS IN THE FIELD. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS AND RING OUT EXISTING CIRCUITS TO DETERMINE EXACT ROUTING.

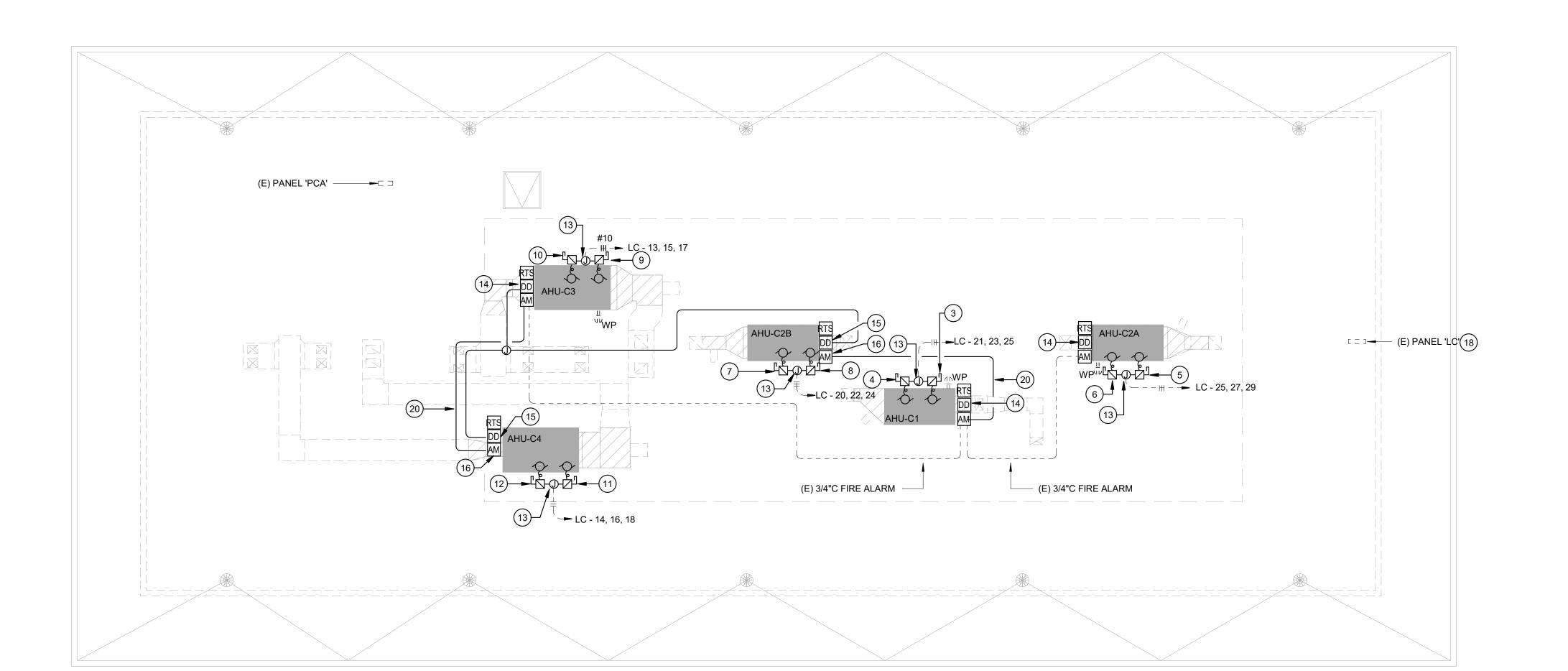

21-12277

E101



- DISCONNECT EXISTING CONDENSING UNIT. DISCONNECT AND REMOVE EXISTING DISCONNECT AND EXISTING BRANCH CIRCUIT TO SOURCE CIRCUIT BREAKER.
- 2 REPLACE EXISTING DUCT SMOKE DETECTOR WITH NEW DUCT SMOKE DETECTOR AS DIRECTED BY MECHANICAL ENGINEER. DUCT SMOKE DETECTOR SHALL BE MONITORED THROUGH THE FIRE ALARM SYSTEM.
- REMOVE EXISTING 70A, 3-POLE CIRCUIT BREAKER AT SPACE 8,10,12 SUPPLYING OUTDOOR CONDENSING UNIT AND PROVIDE NEW 90A, 3-POLE CIRCUIT BREAKER IN PLACE FOR PROTECTION OF NEW OUTDOOR UNIT 'ODU-1' FEEDER.
- 4) ONE 1-1/4"C 3#4 CU THWN AND 1#8 CU GND.
- 5 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 100A, 3-POLE FUSED DISCONNECT WITH 90A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 66.3 MCA, 90 MOCP OUTDOOR UNIT 'ODU-1'.







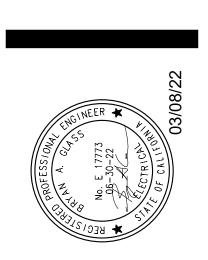

### **GENERAL NOTES**

- A. ELECTRICAL FACILITIES SHOWN DASHED ARE EXISTING:
  - THOSE SHOWN LIGHTWEIGHT (FADED) SHALL REMAIN AND REQUIRE MODIFICATION AS NOTED.
  - THOSE SHOWN HEAVYWEIGHT (DARK) REQUIRE REMOVAL AS
- B. EXISTING ELECTRICAL FACILITIES AND CIRCUITING SHOWN ARE BASED ON LIMITED RECORD DRAWINGS AND LIMITED SITE VISITS. THE DRAWINGS MAY NOT ACCURATELY REPRESENT ACTUAL EXISTING CONDITIONS IN THE FIELD. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS AND RING OUT EXISTING CIRCUITS TO DETERMINE EXACT ROUTING.
- C. PENETRATIONS THROUGH WALLS, CEILINGS, FLOORS, AND/OR ROOFS SHALL BE SEALED.

21-12277 E200 ELECTRICAL DEMOLITION PLAN - COMMUNICATION BUILDING



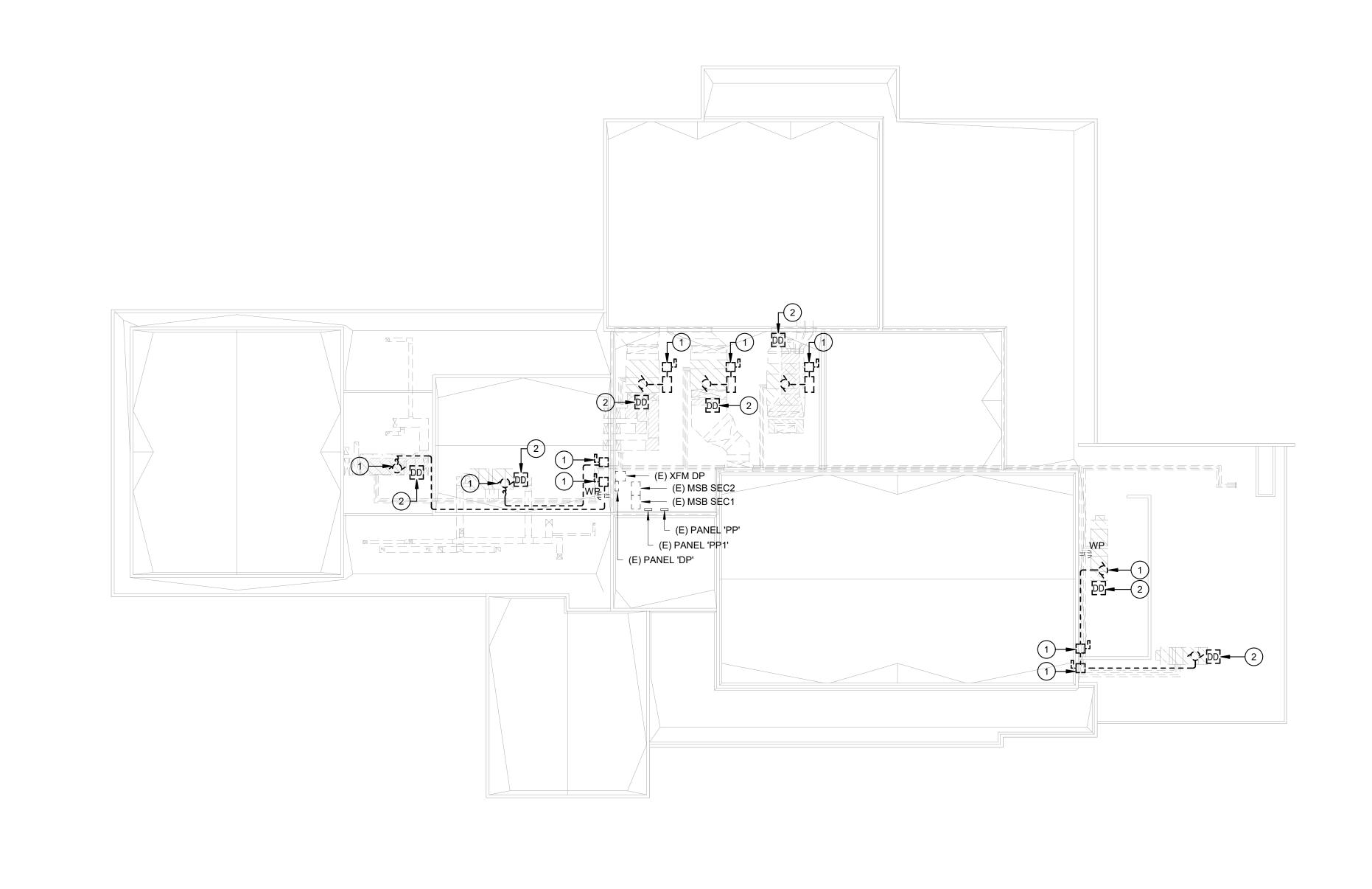
### KEYNOTES


- DISCONNECT EXISTING MECHANICAL UNIT. DISCONNECT AND REMOVE EXISTING DISCONNECT. PRESERVE EXISTING ELEX CONDUIT AND EXISTING DISCONNECT. PRESERVE EXISTING FLEX CONDUIT AND EXISTING BRANCH CIRCUIT.
- DISCONNECT EXISTING MECHANICAL UNIT. DISCONNECT AND REMOVE EXISTING DISCONNECT, EXISTING BRANCH CIRCUIT BACK TO SOURCE IN
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 6 MCA, 15 MOCP AIR HANDLER UNIT 'AHU-C1'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 2.8 FLA POWER EXHAUST AT AIR HANDLER UNIT 'AHU-C1'.
- 5 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 6 MCA, 15 MOCP AIR HANDLER UNIT 'AHU-C2A'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 36, 2.8 FLA POWER WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3¢, 2.8 FLA POWER EXHAUST AT AIR HANDLER UNIT 'AHU-C2A'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3¢, 6 MCA, 15 MOCP AIR HANDLER UNIT 'AHU-C2B'.
- 8 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3\(\phi\), 2.8 FLA POWER
- EXHAUST AT AIR HANDLER UNIT 'AHU-C2B'. 9 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 25A FUSES PROVIDE CONNECTION FOR 460V, 3φ, 15 MCA, 25 MOCP
- AIR HANDLER UNIT 'AHU-C3'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 6.5 FLA POWER EXHAUST AT AIR HANDLER UNIT 'AHU-C3'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 10 MCA, 15 MOCP AIR HANDLER UNIT 'AHU-C4'. PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE DISCONNECT

WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 2.8 FLA POWER

- EXHAUST AT AIR HANDLER UNIT 'AHU-C4'. (13) PROVIDE NEW JUNCTION BOX. SPLICE NEW BRANCH CIRCUIT CONDUCTORS AND PROVIDE POWER TO AIR HANDLER UNIT DISCONNECT AND ASSOCIATED POWER EXHAUST DISCONNECT.
- PROVIDE CONNECTION TO NEW DUCT SMOKE DETECTORS, NEW REMOTE TEST SWITCH, AND NEW FIRE ALARM ADDRESSABLE MODULE UTILIZING PRESERVED EXISTING FIRE ALARM SYSTEM (SIEMENS) CONDUCTORS AND PRESERVED EXISTING FIRE ALARM CIRCUITS. DUCT DETECTOR WIRED FOR UNIT SHUTDOWN PER MECHANICAL.
- PROVIDE CONNECTION TO DUCT SMOKE DETECTOR UTILIZING EXISTING FIRE ALARM CIRCUIT, ONE 3/4"C, 2#12 CU THWN AND 1#12 CU GND.
- PROVIDE CONNECTION TO NEW DUCT SMOKE DETECTORS, NEW REMOTE
  TEST SWITCH, AND NEW FIRE ALARM ADDRESSABLE MONITOR MODULE TEST SWITCH, AND NEW FIRE ALARM ADDRESSABLE MONITOR MODULE TO EXISTING FIRE ALARM SYSTEM (SIEMENS). DUCT DETECTOR WIRED FOR UNIT SHUTDOWN PER MECHANICAL.
- DISCONNECT AND REMOVE EXISTING DUCT SMOKE DETECTOR AND EXISTING FIRE ALARM CONTROL MODULE. PRESERVE EXISTING BRANCH CIRCUIT AND EXISTING CONDUCTORS TO FIRE ALARM SYSTEM (SIEMENS).
- PROVIDE NEW 30A, 3-POLE CIRCUIT BREAKER FOR AIR HANDLER UNIT 'AHU-C3.
- (19) REMOVE EXISTING 20A, 3-POLE SOURCE CIRCUIT BREAKER IN EXISTING PANEL 'LC' FOR AIR HANDLER UNIT 'AHU-C3'.
- ONE 3/4"C WITH 4#18 FPL SHIELDED FIRE ALARM CABLE.

## **DEMOLITION NOTES**

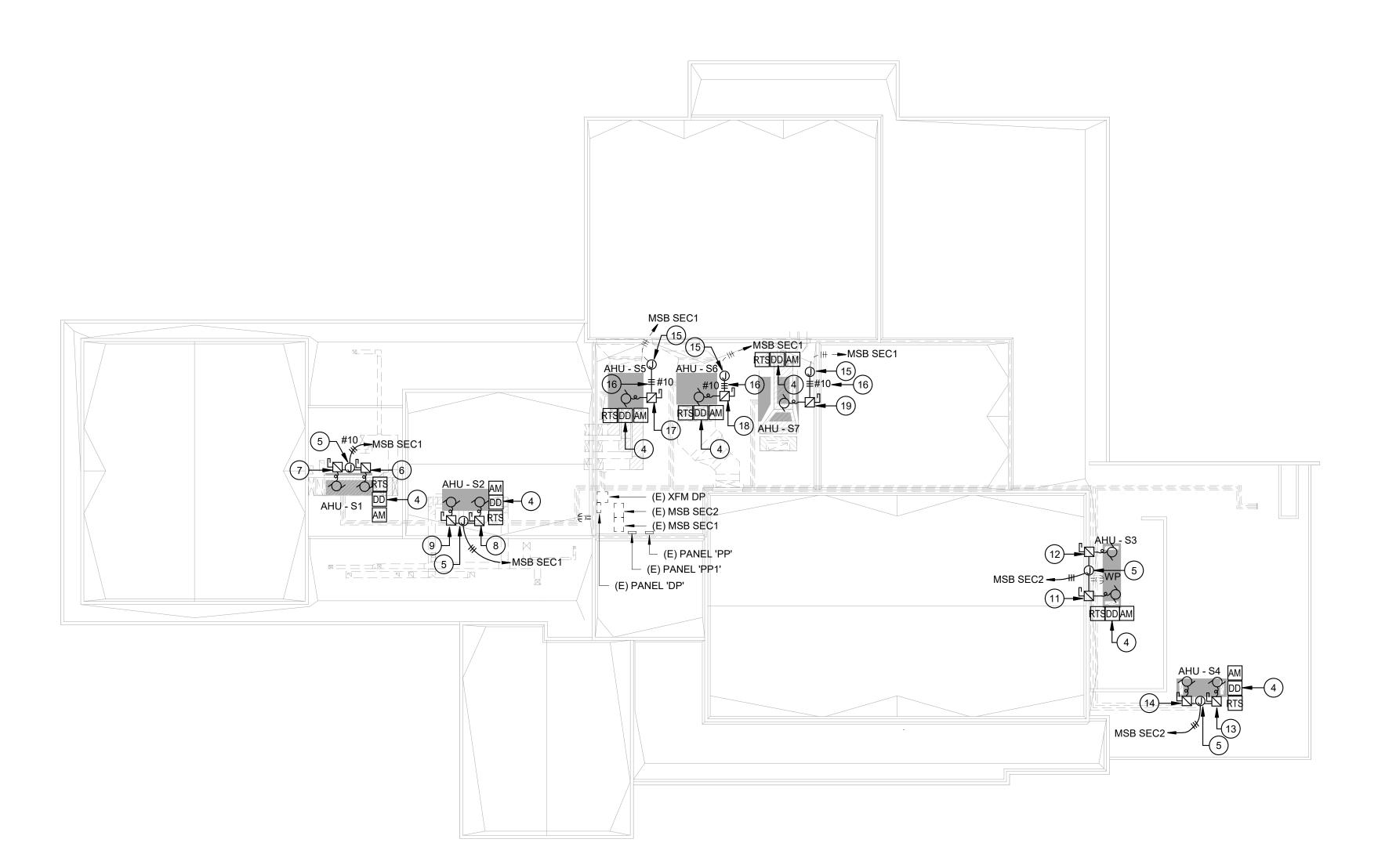

- ELECTRICAL FACILITIES SHOWN DASHED ARE EXISTING:
  - THOSE SHOWN LIGHTWEIGHT (FADED) SHALL REMAIN AND REQUIRE MODIFICATION AS NOTED.
  - THOSE SHOWN HEAVYWEIGHT (DARK) REQUIRE REMOVAL AS
- EXISTING ELECTRICAL FACILITIES AND CIRCUITING SHOWN ARE BASED ON LIMITED RECORD DRAWINGS AND LIMITED SITE VISITS. THE DRAWINGS MAY NOT ACCURATELY REPRESENT ACTUAL EXISTING CONDITIONS IN THE FIELD. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS AND RING OUT EXISTING CIRCUITS TO DETERMINE EXACT ROUTING.
- PENETRATIONS THROUGH WALLS, CEILINGS, FLOORS, AND/OR ROOFS SHALL BE SEALED.





E210

21-12277




STUDENT UNION BLDG - MSB SEC 1

N.T.S. 3 | ELECTRICAL DEMOLITION PLAN - STUDENT UNION

1/16" = 1'-0"







1/16" = 1'-0"

### **KEYNOTES**

- 1) DISCONNECT EXISTING MECHANICAL UNIT. REMOVE EXISTING EQUIPMENT DISCONNECT, MOTOR STARTER, AND PORTION OF EXISTING
- DISCONNECT AND REMOVE EXISTING DUCT SMOKE DETECTOR.
  PRESERVE EXISTING 120V FIRE ALARM BRANCH CIRCUIT POWER AND EXISTING BRANCH FIRE ALARM CONDUCTORS TO FIRE ALARM SYSTEM
- 3 REMOVE EXISTING 40A 3-POLE CIRCUIT BREAKER. PROVIDE NEW 25A, 3-POLE, 18kAIC CIRCUIT BREAKER, MATCH EXISTING (SQUARE D QED POWER STYLE)
- PROVIDE CONNECTION TO NEW DUCT SMOKE DETECTORS, NEW REMOTE TEST SWITCH, AND NEW FIRE ALARM ADDRESSABLE MODULE UTILIZING EXISTING FIRE ALARM SYSTEM (SIEMENS) CONDUCTORS AND EXISTING FIRE ALARM CIRCUIT. DUCT DETECTOR WIRED FOR UNIT SHUTDOWN PER MECHANICAL.
- 5 PROVIDE NEW WEATHERPROOF SPLICE BOX. TAP AIR HANDLER UNIT BRANCH CIRCUIT TO ASSOCIATED POWER EXHAUST.
- 6 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 25A FUSES. PROVIDE POWER CONNECTION, 3#10 CU THWN AND 1#10 CU GND, FOR 460V, 3\( \phi\), 15 MCA, 25 MOCP AIR HANDLING UNIT 'AHU-S1'.
- 7 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3\( \phi, 6.5 \) FLA POWER EXHAUST AT AIR HANDLING UNIT 'AHU-S1'.
- 8 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE POWER CONNECTION, 3#12 CU THWN AND 1#12 CU GND, FOR 460V, 3φ, 6 MCA, 15 MOCP AIR HANDLING UNIT 'AHU-S2'.
- 9 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3φ, 2.8 FLA POWER EXHAUST AT AIR HANDLING UNIT 'AHU-S2'.

POWER STYLE)

- REMOVE EXISTING 30A, 3-POLE CIRCUIT BREAKER. PROVIDE NEW 15A, 3-POLE, 18kAIC CIRCUIT BREAKER, MATCH EXISTING (SQUARE D QED
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE POWER CONNECTION, 3#12 CU THWN AND 1#12 CU GND, FOR 460V, 3φ, 6 MCA, 15 MOCP AIR HANDLING UNIT 'AHU-S3'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3¢, 2.8 FLA POWER EXHAUST AT AIR HANDLING UNIT 'AHU-S3'.
- (13) PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE POWER CONNECTION, 3#12 CU THWN AND 1#12 CU GND, FOR 460V, 3\,\text{\phi}, 6 MCA, 15 MOCP AIR HANDLING UNIT 'AHU-S4'.
- PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES. PROVIDE CONNECTION FOR 460V, 3\, 2.8 FLA POWER EXHAUST AT AIR HANDLING UNIT 'AHU-S4'.
- PROVIDE NEW JUNCTION BOX FOR EXISTING PRESERVED BRANCH CIRCUITS.
- ONE 3/4"C, 3#10 CU THWN AND 1#10 GND FOR CONNECTION TO FUSED DISCONNECT. PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 25A FUSES. PROVIDE POWER CONNECTION, 3#10 CU
- THWN AND 1#10 CU GND, FOR 460V, 36, 13.9 FLA, 17.4 MCA, 25 MOCP AIR HANDLING UNIT 'AHU-S5'. PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 25A FUSES. PROVIDE POWER CONNECTION, 3#10 CU

THWN AND 1#10 CU GND, FOR 460V, 3φ, 13.9 FLA, 17.4 MCA, 25 MOCP AIR

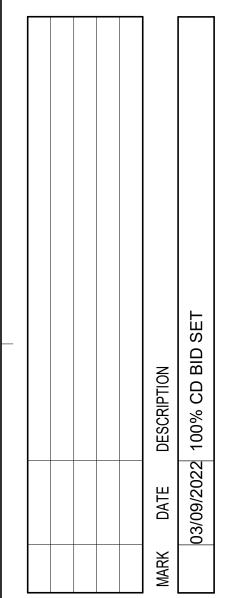
PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 25A FUSES. PROVIDE POWER CONNECTION, 3#10 CU THWN AND 1#10 CU GND, FOR 460V, 3\( \phi\), 13.9 FLA, 17.4 MCA, 25 MOCP AIR

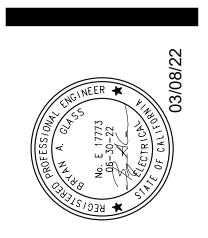
### **GENERAL NOTES**

- A. ELECTRICAL FACILITIES SHOWN DASHED ARE EXISTING:
- THOSE SHOWN LIGHTWEIGHT (FADED) SHALL REMAIN AND REQUIRE MODIFICATION AS NOTED.
- THOSE SHOWN HEAVYWEIGHT (DARK) REQUIRE REMOVAL AS
- EXISTING ELECTRICAL FACILITIES AND CIRCUITING SHOWN ARE BASED ON LIMITED RECORD DRAWINGS AND LIMITED SITE VISITS. THE DRAWINGS MAY NOT ACCURATELY REPRESENT ACTUAL EXISTING CONDITIONS IN THE FIELD. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS AND RING OUT EXISTING CIRCUITS TO DETERMINE EXACT ROUTING.
- PENETRATIONS THROUGH WALLS, CEILINGS, FLOORS, AND/OR ROOFS SHALL BE SEALED.
- PANELBOARDS, MSB, AND TRANSFORMERS ARE LOCATED ON 2ND FLOOR MEZZANINE.



HVAC UPGF MERCED CC 3600 M. STR


21-12277


E220

ELECTRICAL PLAN - SERVICE BUILDING - SERVER ROOM

### KEYNOTES

- 1 PROVIDE HEAVY DUTY WEATHERPROOF 600V, 30A, 3-POLE FUSED DISCONNECT WITH 15A FUSES, PROVIDE CONNECTION FOR 460V, 3φ, 9.3 MCA, 15 MOCP OUTDOOR UNIT 'ODU-2'.
- PROVIDE CONNECTION FOR 460V, 3φ, 27 MCA, 40 MOCP INDOOR UNIT 'CRAC-1' VIA INTEGRAL DISCONNECT.
- 3 UTILIZE EXISTING 20A, 3-POLE SHUNT TRIP CIRCUIT BREAKER FOR PROTECTION OF NEW FEEDER TO OUTDOOR UNIT 'ODU-2' DISCONNECT.
- PROVIDE NEW 40A, 3-POLE HACR TYPE CIRCUIT BREAKER FOR PROTECTION OF NEW FEEDER SUPPLYING INDOOR UNIT 'CRAC-1' UNIT.
- (5) ONE 1"C, 3#8 CU THWN, 1#10 CU GND.
- 6 ONE 3/4"C, 3#12 CU THWN, 1#12 CU GND.
- 7 PROVIDE CONNECTION TO 120V SHUNT TRIP UNIT AT 'ODU-2' FEEDER CIRCUIT BREAKER TO EXISTING 120V A/C SHUNT TRIP CONTROL CIRCUIT CONTROLLING EXISTING SERVER ROOM AC UNIT.





FRESNO HEADQUARTERS

BAKERSFIELD | MODESTO | SAN LUIS OBISPO



# GENERAL NOTES

- A. CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS.
- B. PENETRATIONS THROUGH WALLS, CEILINGS, FLOORS, AND/OR ROOFS SHALL BE SEALED.

HVAC UPGRADE
MERCED COLLEG
3600 M. STREET
MERCED, CA 95348

ROJECT NO.
21-12277

DRAWING E230

### KEYNOTES

- (1) PROVIDE NEW 30A, 3-POLE CIRCUIT BREAKER MATCHING EXISTING. (SQUARE D NF PANEL)
- (2) PROVIDE NEW 40A, 3-POLE CIRCUIT BREAKER MATCHING EXISTING. (SQUARE D NF PANEL)
- 3 PROVIDE NEW 90A, 3-POLE CIRCUIT BREAKER MATCHING EXISTING. (SQUARE D NF PANEL)

| PANEL: MH 400 AMP BUS 277/480V, 3 PH, 4 W |       | 400 AMP BUS<br>277/480V, 3 PH, 4 W |      |                               |       |         | ETIC       | LOCATION: CDC CHILLER YARD MOUNTING: SURFACE |       |                            |        |      |        |     |      |       |   |
|-------------------------------------------|-------|------------------------------------|------|-------------------------------|-------|---------|------------|----------------------------------------------|-------|----------------------------|--------|------|--------|-----|------|-------|---|
|                                           | LBOAF |                                    |      | 100% RATED NEUTRAL            |       | A.I.C.: | 14000      |                                              |       | ENCLOSURE: NEMA            |        |      |        |     |      |       |   |
| CIRC                                      | PNL   | BREAKER                            |      | SERVES                        |       | V       | OLT-AMPERE | S                                            |       | SERVES                     | BREAKE | R    | CIRC   | CKT |      |       |   |
| NO.                                       | SPACE | AMP                                | POLE | POLE                          | POLE  | MP POLE | SERVES     | LOAD                                         | Α     | В                          | С      | LOAD | SERVES | AMP | POLE | SPACE | 1 |
| 1                                         | 1     |                                    |      |                               | 38508 | 38508   |            |                                              |       |                            |        |      | 2      | 2   |      |       |   |
| 3                                         | 3     | 175                                | 3    | (N) AIR COOLED CHILLER 'CH-1' | 38508 |         | 38508      |                                              |       |                            |        |      | 4      | 4   |      |       |   |
| 5                                         | 5     |                                    |      |                               | 38508 |         |            | 38508                                        |       |                            |        |      | 6      | 6   |      |       |   |
| 7                                         | 7     |                                    |      |                               | 746   | 746     |            |                                              | 0     |                            |        |      | 8      | 8   |      |       |   |
| 9                                         | 9     | 15                                 | 3    | (N) PUMP 'P-1'                | 746   |         | 746        |                                              | 0     | (E) A/C #2                 | 15     | 3    | 10     | 10  |      |       |   |
| 11                                        | 11    | _                                  |      |                               | 746   |         |            | 746                                          | 0     |                            |        |      | 12     | 12  |      |       |   |
| 13                                        | 13    |                                    |      |                               | 746   | 746     | -          |                                              | 0     |                            |        |      | 14     | 14  |      |       |   |
| 15                                        | 15    | 15                                 | 3    | (N) 'PUMP' P-2                | 746   |         | 746        |                                              | 0     | (E) A/C #2                 | 15     | 3    | 16     | 16  |      |       |   |
| 17                                        | 17    |                                    |      |                               | 746   |         |            | 746                                          | 0     |                            |        |      | 18     | 18  |      |       |   |
| 19                                        | 19    | 20                                 | 1    | EXISTING LOAD                 | 0     | 0       | _          |                                              |       | SPACE                      |        | 1    | 20     | 20  |      |       |   |
| 21                                        | 21    | 20                                 | 1    | EXISTING LOAD                 | 0     |         | 0          |                                              |       | SPACE                      |        | 1    | 22     | 22  |      |       |   |
| 23                                        | 23    | 20                                 | 1    | EXISTING LOAD                 | 0     |         |            | 0                                            | 0     | SPACE                      |        | 1    | 24     | 24  |      |       |   |
| 25                                        | 25    | 20                                 | 1    | EXISTING LOAD                 | 0     | 0       | -          |                                              | 0     | SPACE                      |        | 1    | 26     | 26  |      |       |   |
| 27                                        | 27    | 20                                 | 1    | EXISTING LOAD                 | 0     |         | 0          |                                              | 0     | SPACE                      |        | 1    | 28     | 28  |      |       |   |
| 29                                        | 29    |                                    | 1    | SPACE                         | 0     |         |            | 0                                            | 0     | SPACE                      |        | 1    | 30     | 30  |      |       |   |
| 31                                        | 31    |                                    | 1    | SPACE                         | 0     | 0       |            |                                              | 0     | SPACE                      |        | 1    | 32     | 32  |      |       |   |
| 33                                        | 33    |                                    | 1    | SPACE                         | 0     |         | 0          |                                              | 0     | SPACE                      |        | 1    | 34     | 34  |      |       |   |
| 35                                        | 35    |                                    | 1    | SPACE                         | 0     |         |            | 0                                            | 0     | SPACE                      |        | 1    | 36     | 36  |      |       |   |
| 37                                        | 37    |                                    | 1    | SPACE                         | 0     | 0       |            |                                              | 0     | SPACE                      |        | 1    | 38     | 38  |      |       |   |
| 39                                        | 39    |                                    | 1    | SPACE                         | 0     |         | 0          |                                              | 0     | SPACE                      |        | 1    | 40     | 40  |      |       |   |
| 41                                        | 41    |                                    | 1    | SPACE                         | 0     |         |            | 0                                            | 0     | SPACE                      |        | 1    | 42     | 42  |      |       |   |
|                                           |       |                                    |      | TOTAL CONNECTED LOAD (VA):    |       | 40000   | 40000      | 40000                                        |       |                            |        |      |        |     |      |       |   |
|                                           |       |                                    |      | 25% LCL/LML (VA):             |       | 9627    | 9627       | 9627                                         |       |                            |        |      |        |     |      |       |   |
|                                           |       |                                    |      | TOTAL CALCULATED LOAD (VA):   |       | 49627   | 49627      | 49627                                        | TOTAL | CALCULATED LOAD FOR PANEL: |        |      |        |     |      |       |   |
|                                           |       |                                    |      | TOTAL CALCULATED LOAD (AMPS): |       | 179.2   | 179.2      | 179.2                                        |       | 148881 VA                  |        |      |        |     |      |       |   |

| EXISTI       | NEL:<br>ING<br>LBOAI |       | Α    | 400 AMP BUS<br>277/480V, 3 PH, 4 W<br>100% RATED NEUTRAL |       | MAIN: 400A CB TRIP: THERMAL-MAGNETIC A.I.C.: 14000 A |              |        | TIC     | LOCATION: ADMINISTRATION BUILDING MOUNTING: SURFACE ENCLOSURE: NEMA |       |      |              |            |
|--------------|----------------------|-------|------|----------------------------------------------------------|-------|------------------------------------------------------|--------------|--------|---------|---------------------------------------------------------------------|-------|------|--------------|------------|
| CIRCUIT BREA |                      | BREAK | ER   | _                                                        |       | \                                                    | VOLT-AMPERES |        |         |                                                                     | BREAK | ER   | CIRC         | UIT        |
| CKT<br>NO.   | PNL<br>SPACE         | AMP   | POLE | SERVES                                                   | LOAD  | A                                                    | В            | С      | LOAD    | SERVES                                                              | AMP   | POLE | PNL<br>SPACE | CKT<br>NO. |
| 1            | 1                    |       |      |                                                          | 13856 | 20867                                                |              |        | 7011    |                                                                     |       |      | 2            | 2          |
| 3            | 3                    | 100   | 3    | (E) TRANSFORMER PA                                       | 13856 |                                                      | 20867        |        | 7011    | (E) ADM-1 AIR HANDLER                                               | 30    | 3    | 4            | 4          |
| 5            | 5                    |       |      |                                                          | 13856 |                                                      |              | 20867  | 7011    |                                                                     |       |      | 6            | 6          |
| 7            | 7                    |       |      |                                                          | 6928  | 24536                                                |              |        | 17608   |                                                                     |       |      | 8            | 8          |
| 9            | 9                    | 50    | 3    | (E) ADM-3                                                | 6928  |                                                      | 24536        |        | 17608   | (N) CONDENSING UNIT 'ODU-1'                                         | 90    | 3    | 10           | 10         |
| 11           | 11                   |       |      |                                                          | 6928  |                                                      |              | 24536  | 17608   |                                                                     |       |      | 12           | 12         |
| 13           | 13                   |       |      |                                                          | 16627 | 37411                                                |              |        | 20784   |                                                                     |       |      | 14           | 14         |
| 15           | 15                   | 100   | 3    | (E) ADM-2                                                | 16627 |                                                      | 37411        |        | 20784   | (E) PANEL LA                                                        | 100   | 3    | 16           | 16         |
| 17           | 17                   |       |      |                                                          | 16627 |                                                      |              | 37411  | 20784   |                                                                     |       |      | 18           | 18         |
| 19           | 19                   |       |      |                                                          | 20784 | 20784                                                |              |        | 0       | SPACE                                                               |       | 1    | 20           | 20         |
| 21           | 21                   | 100   | 3    | (E) PANEL AA                                             | 20784 |                                                      | 20784        |        | 0       | SPACE                                                               |       | 1    | 22           | 22         |
| 23           | 23                   |       |      |                                                          | 20784 |                                                      |              | 20784  | 0       | SPACE                                                               |       | 1    | 24           | 24         |
| 25           | 25                   |       | 1    | SPACE                                                    | 0     | 0                                                    |              |        | 0       | SPACE                                                               |       | 1    | 26           | 26         |
| 27           | 27                   |       | 1    | SPACE                                                    | 0     |                                                      | 0            |        | 0       | SPACE                                                               |       | 1    | 28           | 28         |
| 29           | 29                   |       | 1    | SPACE                                                    | 0     |                                                      |              | 0      | 0       | SPACE                                                               |       | 1    | 30           | 30         |
|              |                      |       |      | TOTAL CONNECTED LOAD (VA):                               |       | 103598                                               | 103598       | 103598 |         |                                                                     |       |      |              |            |
|              |                      |       |      | 25% LCL/LML (VA):                                        |       | 1753                                                 | 1753         | 1753   |         |                                                                     |       |      |              |            |
|              |                      |       |      | TOTAL CALCULATED LOAD (VA):                              |       | 105351                                               | 105351       | 105351 | TOTAL C | ALCULATED LOAD FOR PANEL:                                           |       |      |              |            |
|              |                      |       |      | TOTAL CALCULATED LOAD (AMPS):                            |       | 380.3                                                | 380.3        | 380.3  |         | 316052 VA                                                           |       |      |              |            |

| PAI<br>EXISTI | NEL:         |       | <b>A-1</b> | <br>125 AMP BUS<br>277/480V, 3 PH, 4 W |       |         | 125A<br>THERMAI | L-MAGNE | TIC   | LOCATION: SERVICE BULDIN MOUNTING: SURFACE | G     |      |              |            |
|---------------|--------------|-------|------------|----------------------------------------|-------|---------|-----------------|---------|-------|--------------------------------------------|-------|------|--------------|------------|
| PANE          | LBOAF        | RD    |            | 100% RATED NEUTRAL                     |       | A.I.C.: | 14000           | Α       |       | ENCLOSURE: NEMA                            |       |      |              |            |
| CIRC          | UIT          | BREAK | ER         |                                        |       | V       | OLT-AMPERE      | :S      |       |                                            | BREAK | (ER  | CIRC         | UIT        |
| CKT<br>NO.    | PNL<br>SPACE | АМР   | POLE       | SERVES                                 | LOAD  | A       | В               | С       | LOAD  | SERVES                                     | AMP   | POLE | PNL<br>SPACE | CKT<br>NO. |
| 1             | 1            |       |            |                                        | 12000 | 14272   |                 |         | 2272  |                                            |       |      | 2            | 2          |
| 3             | 3            | 70    | 3          | (E) TRANSFORMER                        | 12000 |         | 14272           |         | 2272  | (N) OUTDOOR UNIT 'ODU-2'                   | 20    | 3    | 4            | 4          |
| 5             | 5            |       |            |                                        | 12000 |         |                 | 14272   | 2272  |                                            |       |      | 6            | 6          |
| 7             | 7            | 20    | 1          | (E) LIGHTS -COMPUTER OFFICES           | 620   | 620     |                 |         | 0     | 120V SHUNT-TRIP UNIT                       | 20    | 1    | 8            | 8          |
| 9             | 9            | 20    | 1          | (E) LIGHTS - COMPUTER ROOM             | 650   |         | 8132            |         | 7482  |                                            |       |      | 10           | 10         |
| 11            | 11           | 20    | 1          | (E) LIGHTS - COMPUTER ROOM             | 650   |         |                 | 8132    | 7482  | (N) INDOOR UNIT 'CRAC-1'                   | 40    | 3    | 12           | 12         |
| 13            | 13           | 20    | 1          | SPARE                                  | 0     | 7482    |                 |         | 7482  |                                            |       |      | 14           | 14         |
| 15            | 15           | 20    | 1          | SPARE                                  | 0     |         | 0               |         | 0     | SPARE                                      | 20    | 1    | 16           | 16         |
| 17            | 17           | 20    | 1          | SPARE                                  | 0     |         |                 | 0       | 0     | SPARE                                      | 20    | 1    | 18           | 18         |
|               |              |       |            | TOTAL CONNECTED LOAD (VA):             |       | 22374   | 22404           | 22404   |       |                                            |       |      |              |            |
|               |              |       |            | 25% LCL/LML (VA):                      |       | 568     | 568             | 568     |       |                                            |       |      |              |            |
|               |              |       |            | TOTAL CALCULATED LOAD (VA):            |       | 22942   | 22972           | 22972   | TOTAL | CALCULATED LOAD FOR PANEL:                 |       |      |              |            |
|               |              |       |            | TOTAL CALCULATED LOAD (AMPS):          |       | 82.8    | 82.9            | 82.9    |       | 68887 VA                                   |       |      |              |            |

| PAI<br>EXIST | NEL:         |       | LC   | 400 AMP BUS<br>277/480V, 3 PH, 4 W |      | MAIN:<br>TRIP: | 400A CB    | MAGNE | LOCATION: COMM BLDG ETIC MOUNTING: RECESSED |       |      |              |            |
|--------------|--------------|-------|------|------------------------------------|------|----------------|------------|-------|---------------------------------------------|-------|------|--------------|------------|
| PANE         | LBOAR        | RD    |      | 100% RATED NEUTRAL                 |      | A.I.C.:        | 65000      | Α     | ENCLOSURE: NEMA                             |       |      |              |            |
| CIRC         |              | BREAK | ER   |                                    |      | ٧              | OLT-AMPERE | S     |                                             | BREAK | ER   | CIRCU        |            |
| CKT<br>NO.   | PNL<br>SPACE | АМР   | POLE | SERVES                             | LOAD | Α              | В          | С     | LOAD                                        | АМР   | POLE | PNL<br>SPACE | CKT<br>NO. |
| 1            | 1            | 20    | 1    | (E) READING LAB LIGHTS             | 2191 | 4111           |            |       | 1920 (E) FACILITY OFFICE LIGHTS             | 20    | 1    | 2            | 2          |
| 3            | 3            | 20    | 1    | (E) WRIITING & HI TECH LIGHTS      | 2400 |                | 3000       |       | 600 (E) RECEPTACLES RESTROOMS               | 20    | 1    | 4            | 4          |
| 5            | 5            | 20    | 1    | (E) COMPUTER LAB LIGHTS            | 2750 |                |            | 3080  | 330 (E) CORRIDOR LIGHTS                     | 20    | 1    | 6            | 6          |
| 7            | 7            | 20    | 1    | (E) EXIT SIGNS                     | 77   | 1277           |            |       | 1200 (E) EXTERIOR DOWNLIGHTS                | 20    | 1    | 8            | 8          |
| 9            | 9            |       | 1    | SPACE                              | 0    |                | 0          |       | 0 SPACE                                     | 20    |      | 10           | 10         |
| 11           | 11           |       | 1    | SPACE                              | 0    |                | -          | 0     | 0 SPACE                                     | 20    |      | 12           | 12         |
| 13           | 13           |       |      |                                    | 3050 | 5068           |            |       | 2018                                        | 15    | 3    | 14           | 14         |
| 15           | 15           | 30    | 3    | (N) AIR HANDLER UNIT 'AHU-C3'      | 3050 |                | 5068       |       | 2018 (N) AIR HANDLER UNIT' AHU-C4'          |       |      | 16           | 16         |
| 17           | 17           |       |      |                                    | 3050 |                |            | 5068  | 2018                                        |       |      | 18           | 18         |
| 19           | 19           |       |      |                                    | 1275 | 2550           |            |       | 1275                                        |       |      | 20           | 20         |
| 21           | 21           | 15    | 3    | (N) AIR HANDLER UNITAHU-C1         | 1275 |                | 2550       |       | 1275 (N) AIR HANDLER UNIT 'AHU-C2B'         | 15    | 3    | 22           | 22         |
| 23           | 23           |       |      |                                    | 1275 |                |            | 2550  | 1275                                        |       |      | 24           | 24         |
| 25           | 25           |       |      | (N) AIR HANDLER UNIT 'ACH-C2A'     | 1275 | 1275           |            |       | 0 SPACE                                     | 20    |      | 26           | 26         |
| 27           | 27           | 15    | 3    |                                    | 1275 |                | 1275       |       | 0 SPACE                                     | 20    |      | 28           | 28         |
| 29           | 29           |       |      |                                    | 1275 |                |            | 1275  | 0 SPACE                                     | 20    |      | 30           | 30         |
| 31           | 31           |       | 1    | SPACE                              |      | 7900           |            |       | 7900                                        |       |      | 32           | 32         |
| 33           | 33           |       | 1    | SPACE                              | 0    |                | 7500       |       | 7500 (E) TRANSFORMER T-3 PNL PCB            | 70    | 3    | 34           | 34         |
| 35           | 35           |       | 1    | SPACE                              | 0    |                |            | 7000  | 7000                                        |       |      | 36           | 36         |
| 37           | 37           |       |      |                                    | 9300 | 16720          |            |       | 7420                                        |       |      | 38           | 38         |
| 39           | 39           | 90    | 3    | (E) TRANSFORMER T-1 PNL PCA        | 8580 |                | 14860      |       | 6280 (E) TRANSFORMER T-2 PNL PCC            | 70    | 3    | 40           | 40         |
| 41           | 41           |       |      |                                    | 9860 |                |            | 15940 | 6080                                        |       |      | 42           | 42         |
|              |              |       |      | TOTAL CONNECTED LOAD (VA):         |      | 38901          | 34253      | 34913 |                                             |       |      |              |            |
|              |              |       |      | 25% LCL/LML (VA) :                 |      | 763            | 763        | 763   |                                             |       |      |              |            |
|              |              |       |      | TOTAL CALCULATED LOAD (VA):        |      | 39663          | 35015      | 35675 | TOTAL CALCULATED LOAD FOR PANEL:            |       |      |              |            |
|              |              |       |      | TOTAL CALCULATED LOAD (AMPS):      |      | 143.2          | 126.4      | 128.8 | 110353 VA                                   |       |      |              |            |

U.G. DENOTES UNDERGROUND INSTALLATION V.P. DENOTES VAPOR TIGHT CONSTRUCTION W.P. DENOTES WEATHERPROOF CONSTRUCTION W.T. DENOTES WATER TIGHT CONSTRUCTION A.F.F. DENOTES ABOVE FINISHED FLOOR

A.F.G. DENOTES ABOVE FINISHED GRADE F.B.O. DENOTES FURNISHED BY OTHERS U.O.N. DENOTES UNLESS OTHERWISE NOTED (E) DENOTES EXISTING TO REMAIN, NO WORK U.O.N.

(N) DENOTES NEW (1) ELECTRICAL KEYNOTES: DENOTES KEYNOTE #1 OF NOTES ON SAME SHEET A-3 CIRCUIT HOME RUN: DENOTES PANEL A, CKT. #3, -3/4"C. MINIMUM, U.O.N. 1 CIRCUIT FEEDER: DENOTES FEEDER 'F1' PER SYSTEM FEEDER SCHEDULE

CONDUIT IN ATTIC/WALL: DENOTES 3/4"C-2#12 AWG CU THWN, 1#12 CU GND, U.O.N. — - — CONDUIT IN FLOOR/U.G.: DENOTES 3/4"C-2#12 AWG CU THWN, 1#12 CU GND, U.O.N. |---| DENOTES EXISTING CONDUIT RUN TO REMAIN CONDUIT RUN - STUBBED, CAPPED AND LABELED.

— HH— CONDUIT RUN: DENOTES 3/4"C - 3 #12 AWG CU THWN + 1 #12 CU GND, U.O.N. HH CONDUIT RUN: DENOTES 3/4"C - 4 #12 AWG CU THWN + 1 #12 CU GND, U.O.N. HHH CONDUIT RUN: DENOTES 3/4"C - 5 #12 AWG CU THWN + 1 #12 CU GND, U.O.N. HH HH CONDUIT RUN: DENOTES 1"C - 6 #12 AWG CU THWN + 1 #12 CU GND, U.O.N.

JUNCTION BOX JUNCTION BOX WITH FLEXIBLE CONDUIT CONNECTION TO EQUIPMENT NON-FUSIBLE DISCONNECT SWITCH FUSIBLE DISCONNECT SWITCH

FUSIBLE DISCONNECT SWITCH WITH INTEGRAL MAGNETIC STARTER ELECTRIC MOTOR ELECTRICAL PANELBOARD PER PLANS, FLUSH MOUNTED IN WALL ELECTRICAL PANELBOARD PER PLANS, SURFACE MOUNTED ON WALL FIRE ALARM PANEL PER PLANS, FLUSH MOUNTED IN WALL

FIRE ALARM PANEL PER PLANS, SURFACE MOUNTED ON WALL

FIRE ALARM INDIVIDUAL ADDRESSABLE MODULE RTS FIRE ALARM REMOTE TRANSFER SWITCH FIRE ALARM DUCT DETECTOR IN HVAC DUCT

TAMPER-RESISTANT DUPLEX RECEPTACLE IN WALL @ +18", U.O.N. TAMPER-RESISTANT DUPLEX GFI RECEPTACLE, IN WALL @ 18", U.O.N. € WP TAMPER-RESISTANT WEATHER RESISTANT (W/R) DUPLEX GFCI RECEPTACLE W/ W.P. COVER TAMPER-RESISTANT QUADRUPLEX RECEPTACLE IN WALL @ +18", U.O.N.

JUNCTION BOX JUNCTION BOX WITH FLEXIBLE CONDUIT CONNECTION TO EQUIPMENT タ FLEXIBLE CONDUIT CONNECTION TO EQUIPMENT

SYMBOL LEGEND & NOTES

### CODES, RULES & REGULATIONS

ALL WORK SHOWN HEREIN SHALL COMPLY WITH THE CURRENT REGULATIONS OF THE CALIFORNIA STATE FIRE MARSHAL, CALIFORNIA BUILDING CODE, TITLES 8 AND 19 THROUGH 24, SERVING UTILITY RULES AND ALL OTHER APPLICABLE STATE ORDINANCES. NOTHING IN THESE PLANS OR SPECIFICATIONS SHALL BE INTERPRETED AS TO PERMIT ANY WORK NOT IN CONFORMANCE WITH THESE CODES, RULES AND REGULATIONS. WHERE WORK OF A GREATER DEGREE IS INDICATED IN THESE PLANS OR SPECIFICATIONS, THAT REQUIREMENT SHALL GOVERN SUCH WORK.

### GENERAL NOTES (TYPICAL)

REFER TO THE MECHANICAL AND PLUMBING PLANS FOR THE EXACT LOCATION OF ALL MECHANICAL, HVAC AND PLUMBING EQUIPMENT.

MEP COMPONENT ANCHORAGE NOTE

COORDINATE ALL ELECTRICAL WORK WITH OTHER TRADES WHOSE WORK WILL IMPACT PLACEMENT OR CONNECTION OF ELECTRICALLY POWERED EQUIPMENT REGARDLESS OF RESPONSIBILITY FOR SUPPLYING EQUIPMENT.

ALL MECHANICAL, PLUMBING, AND ELECTRICAL COMPONENTS SHALL BE ANCHORED AND INSTALLED PER THE DETAILS ON THE DSA APPROVED CONSTRUCTION DOCUMENTS. THE FOLLOWING COMPONENTS SHALL BE ANCHORED OR BRACED TO MEET THE FORCE AND DISPLACEMENT REQUIREMENTS PRESCRIBED IN THE 2019 CBC, SECTIONS 1617A.1.18 THROUGH 1617A.1.26 AND ASCE 7-16 CHAPTERS 13, 26 AND 30.

- ALL PERMANENT EQUIPMENT AND COMPONENTS.
- TEMPORARY, MOVEABLE OR MOBILE EQUIPMENT THAT IS PERMANENTLY ATTACHED (E.G. HARD WIRED) TO THE BUILDING UTILITY SERVICES SUCH AS ELECTRICITY, GAS OR WATER. "PERMANENTLY ATTACHED" SHALL INCLUDE ALL ELECTRICAL CONNECTIONS EXCEPT PLUGS FOR 110/220 VOLT RECEPTACLES HAVING FLEXIBLE CABLE.
- TEMPORARY, MOVABLE OR MOBILE EQUIPMENT EQUIPMENT WHICH IS HEAVIER THAN 400 POUNDS OR HAS A CENTER OF MASS LOCATED 4 FEET OR MORE ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT IS REQUIRED TO BE RESTRAINED IN A MANNER APPROVED BY DSA.

THE FOLLOWING MECHANICAL AND ELECTRICAL COMPONENTS SHALL BE POSITIVELY ATTACHED TO THE STRUCTURE BUT NEED NOT DEMONSTRATE DESIGN COMPLIANCE WITH THE REFERENCES NOTED ABOVE. THESE COMPONENTS SHALL HAVE FLEXIBLE CONNECTIONS PROVIDED BETWEEN THE COMPONENT AND ASSOCIATED DUCTWORK, PIPING, AND CONDUIT. FLEXIBLE CONNECTIONS MUST ALLOW MOVEMENT IN BOTH TRANSVERSE AND LONGITUDINAL DIRECTIONS:

- A. COMPONENTS WEIGHING LESS THAN 400 POUNDS AND HAVE A CENTER OF MASS LOCATED 4 FEET OR LESS ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT.
- COMPONENTS WEIGHING LESS THAN 20 POUNDS, OR IN THE CASE OF DISTRIBUTED SYSTEMS, LESS THAN 5 POUNDS PER FOOT, WHICH ARE SUSPENDED FROM A ROOF OR FLOOR OR HUNG FROM A WALL.

THE ANCHORAGE OF ALL MECHANICAL, ELECTRICAL AND PLUMBING COMPONENTS SHALL BE SUBJECT TO THE APPROVAL OF THE DESIGN PROFESSIONAL IN GENERAL RESPONSIBLE CHARGE OR STRUCTURAL ENGINEER DELEGATED RESPONSIBILITY AND ACCEPTANCE BY DSA. THE PROJECT INSPECTOR WILL VERIFY THAT ALL COMPONENTS AND EQUIPMENT HAVE BEEN ANCHORED IN ACCORDANCE WITH THE ABOVE REQUIREMENTS.

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEM BRACING NOTE:

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEMS SHALL BE BRACED TO COMPLY WITH THE FORCES AND DISPLACEMENTS PRESCRIBED IN ASCE 7-16 SECTION 13.3 AS DEFINED IN ASCE 7-16 SECTION 13.6.5, 13.6.6, 13.6.7, 13.6.8; AND 2019 CBC, SECTIONS 1617A.1.24, 1617A.1.25, AND 1617A.1.26.

THE METHOD OF SHOWING BRACING AND ATTACHMENTS TO THE STRUCTURE FOR THE IDENTIFIED DISTRIBUTION SYSTEM ARE AS NOTED BELOW. WHEN BRACING AND ATTACHMENTS ARE BASED ON A PREAPPROVED INSTALLATION GUIDE (E.G., OSHPD OPM FOR 2013 CBC OR LATER). COPIES OF THE BRACING SYSTEM INSTALLATION GUIDE OR MANUAL SHALL BE AVAILABLE ON THE JOBSITE PRIOR TO THE START OF AND DURING THE HANGING AND BRACING OF THE DISTRIBUTION SYSTEMS. THE STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE TO SUPPORT THE HANGER AND BRACE LOADS.

ELECTRICAL DISTRIBUTION SYSTEMS:

SHALL COMPLY WITH THE APPLICABLE OSHPD PRE-APPROVAL (OPM#) #OPM-0052-13, "SEISMIC BRACING AND SUPPORT SYSTEMS"



HVAC MERC 3600 MERCED, 0

21-12277